• 《工程索引》(EI)刊源期刊
  • Scopus
  • 中文核心期刊
  • 中国科学引文数据库来源期刊

人工神经网络预测纯金属的表面张力

桂玮珍, 谢允安, 乔芝郁

桂玮珍, 谢允安, 乔芝郁. 人工神经网络预测纯金属的表面张力[J]. 工程科学学报, 1997, 19(3): 287-290. DOI: 10.13374/j.issn1001-053x.1997.03.014
引用本文: 桂玮珍, 谢允安, 乔芝郁. 人工神经网络预测纯金属的表面张力[J]. 工程科学学报, 1997, 19(3): 287-290. DOI: 10.13374/j.issn1001-053x.1997.03.014
Gui Weizhen, Xie Yunan, Qiao Zhiyu. Estimating Surface Tension of Pure Metals by Neural Network[J]. Chinese Journal of Engineering, 1997, 19(3): 287-290. DOI: 10.13374/j.issn1001-053x.1997.03.014
Citation: Gui Weizhen, Xie Yunan, Qiao Zhiyu. Estimating Surface Tension of Pure Metals by Neural Network[J]. Chinese Journal of Engineering, 1997, 19(3): 287-290. DOI: 10.13374/j.issn1001-053x.1997.03.014

人工神经网络预测纯金属的表面张力

基金项目: 

国家自然科学基金

详细信息
    作者简介:

    桂玮珍 女 47岁 工程师

  • 分类号: TP399;O647.1

Estimating Surface Tension of Pure Metals by Neural Network

  • 摘要: 建立了以纯金属原子半径、熔点、沸点和原子化焓预测表面张力的人工神经网络模型.训练后的神经网络能较好的拟会实验数据.对40种金属的表面张力进行回想和预测结果与实验值的偏差在可接受范围内,表明人工神经网络在纯金属表面张力预测方面有一定的前景.
    Abstract: An artificial neural network was established to forecast the surface tension of pure metal from the experimental data of atomic radius, melting point, boiling point and atomization enthalpies. The trained network can represent the relahonship between the input factors and output factor (surface tension).The associated and forecast data for more than 40 pure metals are acceptable considering the deviation of the experimental dara for surface tension, which shows a good prospect of artificial neural network in the prediction of surface tension of pure metals.
计量
  • 文章访问数:  394
  • HTML全文浏览量:  119
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-07-15
  • 网络出版日期:  2021-09-03
  • 刊出日期:  1997-03-24

目录

    /

    返回文章
    返回