Citation: | WU Jiang, XU Haoyuan, YAN Haoqi, XIONG Feng, CAO Xingyu, GAO Lulu, DUAN Jingliang, MA Fei. Inverse kinematics solution of an unsupervised learning drilling boom[J]. Chinese Journal of Engineering, 2024, 46(8): 1479-1488. DOI: 10.13374/j.issn2095-9389.2024.01.13.002 |
Intelligent control of the hole-seeking process of a rock drilling rig boom is crucial for enhancing the accuracy and efficiency of rock drilling operations. The inverse kinematics solution (IKS) is the core of achieving precise and rapid hole-seeking control of the boom. However, existing analytical and numerical techniques are inadequate in fulfilling the accuracy and time efficiency requirements for IKS in complex drilling boom scenarios. Conventional neural network (NN) approaches heavily depend on labeled data comprising target borehole sets derived from the activities of each joint and forward kinematics. The distribution of drill endpoints generated by this data cannot cover the entire workspace, resulting in the low reliability of the solution. To overcome these challenges, this study introduces an unsupervised learning-based NN method for IKS emphasizing safety constraints. This innovative method differs from traditional approaches in that it does not depend on labeled data. Instead, it utilizes the desired end position of the drilling boom as the network input. The network generates an eight-dimensional joint vector, and the actual drill end pose is derived through forward kinematics calculations on this vector. Then, the difference between the actual and desired drill end poses is used as the optimization objective, driving the network updates through gradient descent. The advantage of this method lies in eliminating the need for complex joint label data required in supervised learning IKS and using the differences in drill end poses directly as optimization objectives, which helps improve the accuracy of IKS. Meanwhile, a critical innovation of this study is integrating a safety collision penalty into the objective function of the solution, ensuring that the network’s output for joint positions adheres to specific environmental limitations. If the actual distance falls below the safety threshold, penalty terms are incorporated into the objective function, allowing for the adjustment of weights to maintain a balance between the precision demands of hole drilling and the design requirements of the safety constraints. This method improves the accuracy of IKS and significantly reduces its collision rate. Experimental results reveal that the mean hole-seeking error obtained using this unsupervised learning-based method achieves a mean hole-seeking error of 5–7 mm in IKS, a significant improvement of approximately 70.72% over supervised learning methods. Moreover, introducing safety constraints has successfully reduced the collision rate in IKS solutions by 90.28% without sacrificing the accuracy of the solutions.
[1] |
杨光照, 邹学新, 李云涛. 凿岩台车的研发情况与发展趋势. 中国重型装备, 2009(1):47 doi: 10.3969/j.issn.1674-0963.2009.01.015
Yang G Z, Zou X X, Li Y T. Research status and development trend of drilling jumbo. China Heavy Equip, 2009(1): 47 doi: 10.3969/j.issn.1674-0963.2009.01.015
|
[2] |
Yan H Q, Xu H Y, Gao H B, et al. Integrated drill boom hole-seeking control via reinforcement learning // 2023 IEEE International Conference on Unmanned Systems (ICUS). Hefei, 2023: 1247
|
[3] |
Kucuk S, Bingul Z. Robot Kinematics: Forward and Inverse Kinematics // Cubero S. Industrial Robotics: Theory, Modelling and Control. London: IntechOpen, 2006
|
[4] |
燕盈萍, 刘翔, 魏波, 等. 八自由度凿岩台车钻臂运动学分析. 现代制造技术与装备, 2023, 59(6):35 doi: 10.3969/j.issn.1673-5587.2023.06.013
Yan Y P, Liu X, Wei B, et al. Kinematic analysis of drilling arm of eight degrees of freedom rock drilling trolley. Mod Manuf Technol Equip, 2023, 59(6): 35 doi: 10.3969/j.issn.1673-5587.2023.06.013
|
[5] |
Qin L, Wei X, Lv L L, et al. An analytical solution for inverse kinematics of SSRMS-type redundant manipulators. Sensors, 2023, 23(12): 5412 doi: 10.3390/s23125412
|
[6] |
Zhang H S, Xia Q J, Sun J C, et al. A fully geometric approach for inverse kinematics of a six-degree-of-freedom robot arm. J Phys: Conf Ser, 2022, 2338(1): 012089 doi: 10.1088/1742-6596/2338/1/012089
|
[7] |
Chen Y H, Luo X, Han B L, et al. A general approach based on Newton’s method and cyclic coordinate descent method for solving the inverse kinematics. Appl Sci, 2019, 9(24): 5461 doi: 10.3390/app9245461
|
[8] |
Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: Past, present, and future. Multimedia Tools Appl, 2021, 80(5): 8091 doi: 10.1007/s11042-020-10139-6
|
[9] |
Tang Z L, An J Q. Position solution and motion simulation for rock drilling arm // 2019 Chinese Control Conference (CCC). Guangzhou, 2019: 4673
|
[10] |
戈剑武, 祁荣宾, 钱锋, 等. 一种改进的自适应差分进化算法. 华东理工大学学报(自然科学版), 2009, 35(4):600
Ge J W, Qi R B, Qian F, et al. A modified adaptive differential evolution algorithm. J East China Univ Sci Technol, 2009, 35(4): 600
|
[11] |
张明松, 肖锦志, 王恩恒, 等. 冗余机械臂的逆运动求解及轨迹规划. 机械传动, 2021, 45(6):71
Zhang M S, Xiao J Z, Wang E H, et al. Inverse kinematical solving and trajectory planning of redundant manipulator. J Mech Transm, 2021, 45(6): 71
|
[12] |
杨惠珍, 刘西洋. 基于改进自适应小生境遗传算法的机械臂逆运动学求解. 西北工业大学学报, 2019, 37(3):488 doi: 10.3969/j.issn.1000-2758.2019.03.008
Yang H Z, Liu X Y. Solving approach of inverse kinematics for manipulators based on improved adaptive niche genetic algorithm. J Northwest Polytech Univ, 2019, 37(3): 488 doi: 10.3969/j.issn.1000-2758.2019.03.008
|
[13] |
李卫硕, 孙剑, 陈伟. 基于BP神经网络机器人实时避障算法. 仪器仪表学报, 2019, 40(11):204
Li W S, Sun J, Chen W. Real-time obstacle avoidance algorithm for robots based on BP neural network. Chin J Sci Instrum, 2019, 40(11): 204
|
[14] |
Csiszar A, Eilers J, Verl A. On solving the inverse kinematics problem using neural networks // 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Auckland, 2017: 1
|
[15] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529 doi: 10.1038/nature14236
|
[16] |
姜天优, 杨聚辉, 邢亚伟, 等. 基于RBF神经网络凿岩台车钻臂逆解分析. 矿山机械, 2023, 51(2):1 doi: 10.3969/j.issn.1001-3954.2023.02.001
Jiang T Y, Yang J H, Xing Y W, et al. Analysis on inverse kinematics solution of drilling arm of rock drilling jumbo based on RBF neural network. Min Process Equip, 2023, 51(2): 1 doi: 10.3969/j.issn.1001-3954.2023.02.001
|
[17] |
Pang Z X, Wang T Y, Liu S, et al. Kinematics analysis of 7-DOF upper limb rehabilitation robot based on BP neural network // 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). Liuzhou, 2020: 528
|
[18] |
崔孟豪, 姬会福, 惠延波, 等. 基于RBF神经网络的七自由度凿岩台车钻臂运动学研究. 机电工程, 2022, 39(9):1312 doi: 10.3969/j.issn.1001-4551.2022.09.018
Cui M H, Ji H F, Hui Y B, et al. Kinematics of 7-DOF rock drilling jumbo boom based on RBF neural network. J Mech Electr Eng, 2022, 39(9): 1312 doi: 10.3969/j.issn.1001-4551.2022.09.018
|
[19] |
Hsieh Y Z, Xu F X, Lin S S. Deep convolutional generative adversarial network for inverse kinematics of self-assembly robotic arm based on the depth sensor. IEEE Sens J, 2023, 23(1): 758 doi: 10.1109/JSEN.2022.3222332
|
[20] |
Sridhar Reddy A, Satish Chembuly V, Kesava Rao V V S. Collision-free inverse kinematics of redundant manipulator for agricultural applications through optimization techniques. Int J Eng, 2022, 35(7): 1343 doi: 10.5829/IJE.2022.35.07A.13
|
[21] |
Kang M, Cho Y, Yoon S E. RCIK: Real-time collision-free inverse kinematics using a collision-cost prediction network. IEEE Robot Autom Lett, 2022, 7(1): 610 doi: 10.1109/LRA.2021.3128238
|
[22] |
牛勇, 周忠尚, 王伟, 等. 全电脑凿岩台车. 凿岩机械气动工具, 2022, 48(3):6
Niu Y, Zhou Z S, Wang W, et al. Fully computer-based rock drilling jumbos. Rock Drill Mach Pneumatic Tools, 2022, 48(3): 6
|
[23] |
Cui Y M, Liu S Y, Ji H F, et al. Positioning and sequence planning of drilling boreholes in hard rock roadway. IEEE Access, 2040, 8: 56480
|
[24] |
郭锐, 石月, 李永涛, 等. 液压凿岩机器人机械臂轨迹规划研究. 中国工程机械学报, 2021, 19(4):289
Guo R, Shi Y, Li Y T, et al. Research on trajectory planning of hydraulic rockdrilling robot manipulator. Chin J Constr Mach, 2021, 19(4): 289
|
[25] |
Baillieul J. Introduction to ROBOTICS mechanics and control. IEEE Trans Autom Control, 1987, 32(5): 463 doi: 10.1109/TAC.1987.1104613
|
[26] |
Ding F, Liu C. Applying coordinate fixed Denavit–Hartenberg method to solve the workspace of drilling robot arm. Int J Adv Rob Syst, 2018, 15(4): 172988141879328
|
[27] |
Banerjee D, Yu K, Aggarwal G. Object tracking test automation using a robotic arm. IEEE Access, 2018, 6: 56378 doi: 10.1109/ACCESS.2018.2873284
|
[28] |
Duan J L, Liu Z Y, Li S E, et al. Adaptive dynamic programming for nonaffine nonlinear optimal control problem with state constraints. Neurocomputing, 2022, 484: 128 doi: 10.1016/j.neucom.2021.04.134
|
[29] |
覃艳明. 液压凿岩机器人机械臂轨迹规划及跟踪控制研究[学位论文]. 秦皇岛:燕山大学, 2019
Qin Y M. Research on Trajectory Planning and Tracking Control of Hydraulic Rock-Drilling Robot Manipulator [Dissertation]. Qinhuangdao: Yanshan University, 2019
|