Citation: | QIAO Lan, DENG Naifu, MA Shiji, LI Qingwen, SONG Linbo, ZHANG Qinglong. Intelligent carbon emission assessment method for metal mine shaft construction projects[J]. Chinese Journal of Engineering, 2024, 46(6): 1024-1040. DOI: 10.13374/j.issn2095-9389.2023.09.11.002 |
The metal mining industry is the second-largest carbon emitter in China, followed by the power industry. The metal mining industry is closely intertwined with six major industries that prioritize emission reduction, including steel, nonferrous metals, and building materials. The construction of mine shafts and drifts plays a pivotal role in the initial development and construction of the metallurgical mining industry, and its carbon emissions are integral to the advancement of the industry under the “dual carbon” strategy. This study delves into the distinctive characteristics of budget quota preparation for metal mine shaft and drift construction projects during the construction period. This study proposes a carbon emission assessment framework and model based on the dual assessment path of direct and auxiliary systems. Carbon emissions from ten key projects and seven auxiliary projects are calculated at each level within each carbon assessment path. Furthermore, a comprehensive analysis of the list of substances in the smallest unit processes at various levels is conducted through multilevel dissection. This analysis culminates in the development of a carbon emission factor database specific to the mine shaft and drift construction projects, which is achieved by searching and analyzing global lists of carbon emission substances across different industries. Based on the carbon emission assessment framework presented in this study, the fundamental data for the top ten carbon emissions in metal mine shaft and drift construction projects are established using the MySQL database, with each database labeled by a unique identifier. Subsequently, an efficient indexing and scheduling mechanism is implemented for the top ten basic data tables using the MATLAB App Designer. This mechanism facilitates the application of a comprehensive dual-path carbon emission measurement model for detailed carbon emission calculation and analysis of metal mine shaft and drift construction projects. Case analysis reveals that, in main shaft construction, the primary carbon emitters are associated with the use of cement, macadam, and electrically driven equipment, accounting for approximately 70%–80% of carbon emissions. From an emission source perspective, major carbon emitters result from material usage, generating approximately two to three times the carbon emissions of machinery energy consumption. From an emission pathway perspective, major carbon emitters are predominantly concentrated in the shaft body construction phase, constituting approximately 92% of carbon emissions within this segment of the main shaft project. Further analysis indicates that electricity consumption is the primary source of carbon emissions from machinery and equipment, representing approximately one-fourth to one-third of the total carbon emissions. By contrast, cement consumption serves as the principal source of carbon emissions from material use, accounting for approximately one-fifth to one-fourth of the total carbon emissions. Accordingly, energy-saving and emission-reduction techniques should prioritize the optimization of the material preparation process, such as cement, and the utilization of electrically driven equipment. The outcomes of this study can provide methodological foundation and data support for detailed carbon assessment and concrete implementation of low carbon emission-reduction policies for mine shaft and drift construction projects in China.
[1] |
钟磊. 中国采掘业碳排放核算及碳减排潜力评估——以辽宁省铁矿山为例[学位论文]. 大连:东北财经大学, 2022
Zhong L. Assessment for Life-cycle Carbon Emissions and Carbon Abatement Potential of China’s Mining Industry [Dissertation]. Dalian: Dongbei University of Finance and Economics, 2022
|
[2] |
王勇, 吴爱祥, 杨军, 等. 深部金属矿开采关键理论技术进展与展望. 工程科学学报, 2023, 45(8):1281
Wang Y, Wu A X, Yang J, et al. Progress and prospective of the mining key technology for deep metal mines. Chin J Eng, 2023, 45(8): 1281
|
[3] |
蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
|
[4] |
Norgate T, Haque N. Energy and greenhouse gas impacts of mining and mineral processing operations. J Clean Prod, 2010, 18(3): 266 doi: 10.1016/j.jclepro.2009.09.020
|
[5] |
Memary R, Giurco D, Mudd G, et al. Life cycle assessment: A time-series analysis of copper. J Clean Prod, 2012, 33: 97 doi: 10.1016/j.jclepro.2012.04.025
|
[6] |
Haque N, Norgate T. The greenhouse gas footprint of in situ leaching of uranium, gold and copper in Australia. J Clean Prod, 2014, 84: 382 doi: 10.1016/j.jclepro.2013.09.033
|
[7] |
Ekman Nilsson A, Macias Aragonés M, Arroyo Torralvo F, et al. A review of the carbon footprint of Cu and Zn production from primary and secondary sources. Minerals, 2017, 7(9): 168 doi: 10.3390/min7090168
|
[8] |
Farjana S H, Huda N, Parvez Mahmud M A. Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. Sci Total Environ, 2019, 663: 958 doi: 10.1016/j.scitotenv.2019.01.400
|
[9] |
Gan Y, Griffin W M. Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends. Resour Policy, 2018, 58: 90 doi: 10.1016/j.resourpol.2018.03.015
|
[10] |
刘杰, 高嘉蔚. 交通基础设施碳排放核算关键问题及对策探索. 交通节能与环保, 2021, 17(5):4 doi: 10.3969/j.issn.1673-6478.2021.05.002
Liu J, Gao J W. Key problems and countermeasures of carbon emission accounting of transportation infrastructure. Transp Energy Conserv Environ Prot, 2021, 17(5): 4 doi: 10.3969/j.issn.1673-6478.2021.05.002
|
[11] |
王珂, 张宏宇, 吕奋. 基于公路改扩建节能减排造价管理系统的研究. 交通节能与环保, 2020, 16(2):67 doi: 10.3969/j.issn.1673-6478.2020.02.017
Wang K, Zhang H Y, Lv F. Research on design cost management system of energy saving and emission reduction based on highway reconstruction and expansion. Transp Energy Conserv Environ Prot, 2020, 16(2): 67 doi: 10.3969/j.issn.1673-6478.2020.02.017
|
[12] |
杜江, 罗珺, 王锐, 等. 粮食主产区种植业碳功能测算与时空变化规律研究. 生态与农村环境学报, 2019, 35(10):1242
Du J, Luo J, Wang R, et al. The estimation and analysis of spatio-temporal change patterns of carbon functions in major grain producing area. J Ecol Rural Environ, 2019, 35(10): 1242
|
[13] |
宋小龙, 杨建新, 刘晶茹. 高炉渣资源化生产绿色建材的环境效益评估——基于生命周期的视角. 中国人口·资源与环境, 2012, 22(4):51 doi: 10.3969/j.issn.1002-2104.2012.04.010
Song X L, Yang J X, Liu J R. Environmental benefits assessment of blast furnace slag recycling for green building materials based on LCA. China Popul Resour Environ, 2012, 22(4): 51 doi: 10.3969/j.issn.1002-2104.2012.04.010
|
[14] |
乔兰, 邓乃夫, 李庆文, 等. 公路工程施工全生命周期碳排放智能测量方法. 工程科学学报, 2023, 45(12): 2173
Qiao L, Deng N F, Li Q W, et al. Intelligent measurement method of carbon emission throughout the life cycle of highway construction. Chin J Eng, 2023, 45(12): 2173
|
[15] |
夏西强, 路梦圆, 郭磊. 碳交易下碳配额分配方式对制造/再制造影响研究. 系统工程理论与实践, 2022, 42(11):3001 doi: 10.12011/SETP2022-0150
Xia X Q, Lu M Y, Guo L. Studying on the impact of carbon allowance allocation rules on manufacturing/remanufacturing under carbon trading. Syst Eng Theory Pract, 2022, 42(11): 3001 doi: 10.12011/SETP2022-0150
|
[16] |
梁为纲, 赵晓丽, 周凌峰, 等. 碳交易市场体系中的碳排放基准线:应用实践、研究进展与展望. 环境科学研究, 2022, 35(10):2244
Liang W G, Zhao X L, Zhou L F, et al. Carbon emission benchmark in carbon trading market system: Application practice, research progress and prospect. Res Environ Sci, 2022, 35(10): 2244
|
[17] |
杨桔, 祁春节. “一带一路” 国家与中国农产品贸易与碳排放的关系实证分析. 中国农业资源与区划, 2021, 42(1):135
Yang J, Qi C J. An empirical analysis of the relationship between agricultural trade and carbon emissions between China and regions along “the Belt and Road” initiative. Chin J Agric Resour Reg Plan, 2021, 42(1): 135
|
[18] |
兰梓睿, 孙振清. 考虑碳排放的中国轻工产业绿色生产率及影响因素研究——基于轻工业16个细分行业面板数据. 中国人口·资源与环境, 2020, 30(5):58
Lan Z R, Sun Z Q. Research on the green productivity of China’s light industry and the influencing factors under the constraints of carbon emissions—Based on the panel data of 16 Chinese light industry sectors. China Popul Resour Environ, 2020, 30(5): 58
|
[19] |
张士强, 李跃. 煤矿区能源集成与低碳发展关系研究. 煤炭科学技术, 2015, 43(1):138
Zhang S Q, Li Y. Study on relationship between energy integration and low carbon development in coal mining area. Coal Sci Technol, 2015, 43(1): 138
|
[20] |
覃诗. 探讨冶金矿山井巷工程辅助费的计取方法. 中国锰业, 2021, 39(5):57
Qin S. A discusses on calculation method of auxiliary cost of the shaft and lane engineering of metallurgical mine. China Manganese Ind, 2021, 39(5): 57
|
[21] |
蔡晨光. 冶金矿山井巷工程预结算审核中的难点要点. 世界有色金属, 2017(18):18
Cai C G. Key points in the pre settlement examination of the roadway project in metallurgical mines. World Nonferrous Met, 2017(18): 18
|
[22] |
钱崇, 高超, 许朝华, 等. 冶金矿山井巷工程斜坡道辅助费定额的编制与完善. 现代矿业, 2019, 35(10):99 doi: 10.3969/j.issn.1674-6082.2019.10.028
Qian C, Gao C, Xu C H, et al. Establishment and improvement of auxiliary cost quota of ramp of roadway engineering in metallurgical mines. Mod Min, 2019, 35(10): 99 doi: 10.3969/j.issn.1674-6082.2019.10.028
|
[23] |
朱彩云, 曹凤仙. 矿山井巷工程预算编制. 有色金属设计, 2016, 43(1):61 doi: 10.3969/j.issn.1004-2660.2016.01.015
Zhu C Y, Cao F X. Budget making of sinking and driving engineering. Nonferrous Met Des, 2016, 43(1): 61 doi: 10.3969/j.issn.1004-2660.2016.01.015
|
[24] |
Vallack H W, Rypdal K. The global atmospheric pollution forum air pollutant emission inventory manual. version 6.0 May 2019 revision [J/OL]. White Rose Research Online (2019-05-15) [2023-09-11].https://eprints.whiterose.ac.uk/147218/
|
[25] |
吴伟强, 吴安琪. 美国国家环保局(EPA)温室气体清单编制机制. 科学与管理, 2012, 32(2):11
Wu W Q, Wu A Q. Greenhouse gas inventory estimates mechanism in United States environmental protection agency(EPA). Sci Manag, 2012, 32(2): 11
|
[26] |
郑洁. 美国温室气体清单编制机制研究[学位论文]. 杭州:浙江工业大学, 2011
Zheng J. Research on U. S. Greenhouse Gas Inventory Compilation System [Dissertation]. Hangzhou: Zhejiang University of Technology, 2011
|
[27] |
卢露. 碳中和背景下完善我国碳排放核算体系的思考. 西南金融, 2021(12):15 doi: 10.3969/j.issn.1009-4350.2021.12.xnjr202112002
Lu L. Thoughts on perfecting China’s carbon emission accounting system under the background of carbon neutrality. Southwest Finance, 2021(12): 15 doi: 10.3969/j.issn.1009-4350.2021.12.xnjr202112002
|
[28] |
刘夏璐, 王洪涛, 陈建, 等. 中国生命周期参考数据库的建立方法与基础模型. 环境科学学报, 2010, 30(10):2136
Liu X L, Wang H T, Chen J, et al. Method and basic model for development of Chinese reference life cycle database. Acta Sci Circumstantiae, 2010, 30(10): 2136
|
[29] |
张振芳. 露天煤矿碳排放量核算及碳减排途径研究[学位论文]. 徐州:中国矿业大学, 2013
Zhang Z F. Study on Carbon Emissions Accounting and Carbon Emission Reduction Approach of Surface Coal Mine [Dissertation]. Xuzhou: China University of Mining and Technology, 2013
|
[30] |
高峰. 生命周期评价研究及其在中国镁工业中的应用[学位论文]. 北京:北京工业大学, 2008
Gao F. Research on Life Cycle Assessment and the Application in China Magnesium Industry [Dissertation]. Beijing: Beijing University of Technology, 2008
|
[31] |
中华人民共和国住房和城乡建设部. GB/T51366—2019建筑碳排放计算标准. 北京:中国建筑工业出版社, 2019
Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB/T51366—2019 Standard for Building Carbon Emission Calculation. Beijing: China Architecture & Building Press, 2019
|
[32] |
王俊博, 岳俊鹏, 樊礼军, 等. 基于生命周期分析的中国铜工业碳排放核算//中国环境科学学会科学与技术年会论文集. 厦门, 2017:898
Wang J B, Yue J P, Fan L J, et al. Carbon emission accounting of copper industry in China based on life cycle analysis // Proceedings of Chinese Society for Environmental Sciences. Xiamen, 2017: 898
|
[33] |
张孝存. 建筑碳排放量化分析计算与低碳建筑结构评价方法研究[学位论文]. 哈尔滨:哈尔滨工业大学, 2018
Zhang X C. Research on the Quantitative Analysis of Building Carbon Emissions and Assessment Methods for Low-Carbon Buildings and Structures [Dissertation]. Harbin: Harbin Institute of Technology, 2018
|
[34] |
Li Q F, Duan H B, Xie M H, et al. Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure. Renew Sustain Energy Rev, 2021, 138: 110499 doi: 10.1016/j.rser.2020.110499
|
[35] |
Chen B, He G X, Qi J, et al. Greenhouse gas inventory of a typical high-end industrial park in China. Sci World J, 2013, 2013: 717054
|
[36] |
周媛, 郑丽凤, 周新年, 等. 基于行业标准的木材生产作业系统碳排放. 北华大学学报(自然科学版), 2014, 15(6):815
Zhou Y, Zheng L F, Zhou X N, et al. Carbon emission of timber production operating system based on industry standards. J Beihua Univ (Nat Sci), 2014, 15(6): 815
|
[37] |
仓玉洁. 建筑物化阶段碳排放核算方法研究[学位论文]. 西安:西安建筑科技大学, 2018
Cang Y J. Study on Accounting Methods of Building Carbon Emission in Embodied Stage [Dissertation]. Xi’an: Xi’an University of Architecture and Technology, 2018
|
[38] |
季军荣, 张庆年, 周州, 等. 水泥生料中碳酸盐煅烧热力学特性及其碳排放分析. 四川水泥, 2023(4):1
Ji J R, Zhang Q N, Zhou Z, et al. Thermodynamic characteristics and carbon emission analysis of carbonate calcination in cement raw meal. Sichuan Cem, 2023(4): 1
|
[39] |
赵伟祥. 装配式建筑物化阶段碳排放核算模型与低碳化路径研究[学位论文]. 合肥:安徽建筑大学, 2022
Zhao W X. Study on Carbon Emission Accounting Model and Low-Carbon Path of Prefabricated Buildings in Physical and Chemical Stage [Dissertation]. Hefei: Anhui Jianzhu University, 2022
|
[40] |
李金潞. 寒冷地区城市住宅全生命周期碳排放测算及减碳策略研究[学位论文]. 西安:西安建筑科技大学, 2019
Li J L. Study on Carbon Emissions Calculation and Carbon Eduction Strategy of Urban Residential Life Cycle in Cold Areas [Dissertation]. Xi’an: Xi’an University of Architecture and Technology, 2019
|
[41] |
Yue Q, Xu X R, Hillier J, et al. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J Clean Prod, 2017, 149: 1011 doi: 10.1016/j.jclepro.2017.02.172
|
[42] |
周杨, 甘陆军, 韩方方. 基于生命周期评价的快递碳足迹核算. 物流技术, 2021, 40(6):104 doi: 10.3969/j.issn.1005-152X.2021.06.019
Zhou Y, Gan L J, Han F F. Accounting of express delivery carbon footprint based on life cycle assessment. Logist Technol, 2021, 40(6): 104 doi: 10.3969/j.issn.1005-152X.2021.06.019
|
[43] |
中华人民共和国国家发展改革委. 省级温室气体清单编制指南(试行). 北京:国家发展改革委办公厅, 2011
National Development and Reform Commission, People’s Republic of China. Guidelines for the Preparation of Provincial GHG Inventories (Trial ). Beijing: General Office of the National Development and Reform Commission, 2011
|
[44] |
马洋洋, 郝卓, 汪庆云. 基于生命周期评价的车身材料分析. 汽车工程师, 2019(1):11 doi: 10.3969/j.issn.1674-6546.2019.01.002
Ma Y Y, Hao Z, Wang Q Y. Analysis of body materials based on life cycle assessment. Auto Eng, 2019(1): 11 doi: 10.3969/j.issn.1674-6546.2019.01.002
|
[45] |
王玲, 万超, 刘阳, 等. 基于树脂聚酯的生命周期碳排放评价. 化工管理, 2019(25):112 doi: 10.3969/j.issn.1008-4800.2019.25.070
Wang L, Wan C, Liu Y, et al. Life cycle carbon emissions evaluation based on resin polyester. Chem Enterp Manag, 2019(25): 112 doi: 10.3969/j.issn.1008-4800.2019.25.070
|
[46] |
Ozgen S, Caserini S. Methane emissions from small residential wood combustion appliances: Experimental emission factors and warming potential. Atmos Environ, 2018, 189: 164 doi: 10.1016/j.atmosenv.2018.07.006
|
[47] |
Stocker T F, Dahe Q, Plattner G K. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014
|
[48] |
Lee U, Benavides P T, Wang M. Life Cycle Analysis of Waste-to-Energy Pathways. Lemont: Academic Press, 2020
|