Citation: | LI Qi-lan, ZHANG Li-feng, CHEN Wei, WANG Ya-dong, ZHAO Zhen, ZHANG Jing. Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring[J]. Chinese Journal of Engineering, 2022, 44(4): 690-702. DOI: 10.13374/j.issn2095-9389.2021.11.01.003 |
[1] |
Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 41(10): 1181 doi: 10.2355/isijinternational.41.1181
|
[2] |
谭金池, 张斌, 袁富, 等. 板坯连铸结晶器三维流场模拟仿真研究. 江西冶金, 2020, 40(6):11
Tan J C, Zhang B, Yuan F, et al. Simulation of three-dimensional flow field in slab continuous casting mold. Jiangxi Metall, 2020, 40(6): 11
|
[3] |
李超, 王斌. 基于双方程的大涡模拟分析连铸结晶器内钢液流动特性. 山西冶金, 2020, 43(3):1
Li C, Wang B. Large eddy simulation analysis of molten steel flow characteristics in continuous casting mould based on double equation. Shanxi Metall, 2020, 43(3): 1
|
[4] |
Zhao B, Thomas B G, Vanka S P, et al. Transient fluid flow and superheat transport in continuous casting of steel slabs. Metall Mater Trans B, 2005, 36(6): 801 doi: 10.1007/s11663-005-0083-3
|
[5] |
刘中秋, 李宝宽, 姜茂发, 等. 连铸结晶器内氢气/钢液两相非稳态湍流特性的大涡模拟研究. 金属学报, 2013, 49(5):513 doi: 10.3724/SP.J.1037.2012.00760
Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold. Acta Metall Sin, 2013, 49(5): 513 doi: 10.3724/SP.J.1037.2012.00760
|
[6] |
陈威, 张立峰. 板坯连铸结晶器内夹杂物分布的大涡模拟. 中国冶金, 2018, 28(S1): 26
Chen W, Zhang L F. Large eddy simulation of transport and distribution of inclusions in continuous casting slab strand. China Metall, 2018, 28(Suppul 1): 26
|
[7] |
Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model. Metall Mater Trans B, 1999, 30(6): 1095 doi: 10.1007/s11663-999-0116-4
|
[8] |
王军, 于海岐, 朱苗勇. 中薄板坯连铸结晶器钢/渣界面行为数值模拟. 材料与冶金学报, 2008, 7(4):243 doi: 10.3969/j.issn.1671-6620.2008.04.002
Wang J, Yu H Q, Zhu M Y. Numerical simulation of interfacial behaviour between molten steel and slag in medium-thin slab continuous casting mold. J Mater Metall, 2008, 7(4): 243 doi: 10.3969/j.issn.1671-6620.2008.04.002
|
[9] |
Sun X H, Li B, Lu H B, et al. Steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold. Metals, 2019, 9(9): 983 doi: 10.3390/met9090983
|
[10] |
刘中秋, 齐凤升, 李宝宽, 等. 板坯连铸结晶器内渣/金界面非稳态波动行为. 东北大学学报(自然科学版), 2014, 35(12):1733 doi: 10.12068/j.issn.1005-3026.2014.12.014
Liu Z Q, Qi F S, Li B K, et al. Unsteady fluctuation behavior of slag-metal interface in a slab continuous casting mold. J Northeast Univ (Nat Sci)
|
[11] |
Chen W, Ren Y, Zhang L F, et al. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES + VOF + DPM model. JOM, 2019, 71(3): 1158 doi: 10.1007/s11837-018-3255-8
|
[12] |
Wang Y F, Zhang L F. Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake. Metall Mater Trans B, 2011, 42(6): 1319 doi: 10.1007/s11663-011-9554-x
|
[13] |
Chen W, Zhang L F, Wang Y D, et al. Mathematical simulation of two-phase flow and slag entrainment during steel bloom continuous casting. Powder Technol, 2021, 390: 539 doi: 10.1016/j.powtec.2021.05.101
|
[14] |
Zhang X B, Chen W, Zhang L F. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold. China Foundry, 2017, 14(5): 416 doi: 10.1007/s41230-017-7171-2
|
[15] |
卢春晓, 毛誉敏, 张旭彬, 等. 保护渣黏度对连铸润滑影响的模拟仿真. 连铸, 2021, 46(2):43
Lu C X, Mao Y M, Zhang X B, et al. Effect of viscosity of mold flux on infiltration in steel continuous casting by numerical simulation. Continuous Cast, 2021, 46(2): 43
|
[16] |
王林杰, 孔令种, 冯亮花, 等. 高拉速方坯连铸结晶器钢渣界面行为特征. 连铸, 2021, 46(4):11
Wang L J, Kong L Z, Feng L H, et al. Interfacial behavior of steel and slag in billet mold during high casting speed. Continuous Cast, 2021, 46(4): 11
|
[17] |
任磊, 张立峰, 王强强, 等. 基于PIV技术的板坯连铸结晶器内钢水流动行为研究. 工程科学学报, 2016, 38(10):1393
Ren L, Zhang L F, Wang Q Q, et al. Study on fluid flow in a continuous casting slab mold using particle image velocimetry. Chin J Eng, 2016, 38(10): 1393
|
[18] |
Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
|
[19] |
Chaudhary R, Thomas B G, Vanka S P. Effect of electromagnetic ruler braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations. Metall Mater Trans B, 2012, 43(3): 532 doi: 10.1007/s11663-012-9634-6
|
[20] |
Schwarze R. Unsteady RANS simulation of oscillating mould flows. Int J Numer Meth Fluids, 2006, 52(8): 883 doi: 10.1002/fld.1208
|
[21] |
Ni P Y, Ersson M, Jonsson L, et al. Numerical study on the influence of a swirling flow tundish on multiphase flow and heat transfer in mold. Metals, 2018, 8(5): 368 doi: 10.3390/met8050368
|
[22] |
Asad A, Kratzsch C, Schwarze R. Numerical investigation of the free surface in a model mold. Steel Res Int, 2016, 87(2): 181 doi: 10.1002/srin.201400600
|
[23] |
Bielnicki M, Jowsa J. Physical and numerical modeling of liquid slag entrainment in mould during slabs casting. Metall Res Technol, 2020, 117(5): 509 doi: 10.1051/metal/2020055
|
[24] |
Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model. JOM, 2015, 67(7): 1459 doi: 10.1007/s11837-015-1465-x
|
[25] |
Zhao P, Zhou L H. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould. Ironmak Steelmak, 2019, 46(9): 886 doi: 10.1080/03019233.2019.1604613
|
[26] |
Zhao P, Li Q, Kuang S B, et al. Mathematical modeling of liquid slag layer fluctuation and slag droplets entrainment in a continuous casting mold based on VOF-LES method. High Temp Mater Process, 2017, 36(5): 551 doi: 10.1515/htmp-2016-0143
|
[27] |
Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows. Chem Eng J, 2018, 338: 465 doi: 10.1016/j.cej.2018.01.051
|
[28] |
Xiao C, Zhang J M, Luo Y Z, et al. Control of macrosegregation behavior by applying final electromagnetic stirring for continuously cast high carbon steel billet. J Iron Steel Res Int, 2013, 20(11): 13 doi: 10.1016/S1006-706X(13)60190-9
|
[29] |
李建超, 王宝峰, 王晓东, 等. 连铸圆坯凝固末端电磁搅拌位置及工艺参数优化. 特种铸造及有色合金, 2014, 34(8):853
Li J C, Wang B F, Wang X D, et al. Optimization of stirring position and parameters of final electromagnetic stirring process for continuous casting bloom. Special Cast Nonferrous Alloys, 2014, 34(8): 853
|
[30] |
Javurek M, Barna M, Gittler P, et al. Flow modelling in continuous casting of round bloom strands with electromagnetic stirring. Steel Res Int, 2008, 79(8): 617 doi: 10.1002/srin.200806174
|
[31] |
Wang Y D, Zhang L F, Chen W, et al. Three-dimensional macrosegregation model of bloom in curved continuous casting process. Metall Mater Trans B, 2021, 52(4): 2796 doi: 10.1007/s11663-021-02231-5
|
[32] |
Liao Y L, Yao Y F. Applications analysis of the technology of mold electromagnetic stirring in a steel mill. Adv Mater Res, 2013, 721: 471 doi: 10.4028/www.scientific.net/AMR.721.471
|
[33] |
胡招凡, 张炯明, 蔡珍, 等. 结晶器电磁搅拌对IF钢连铸坯表层纯净度的影响. 钢铁研究学报, 2011, 23(10):15
Hu Z F, Zhang J M, Cai Z, et al. Effects of M-EMS on surface cleaniness of IF steel slab. J Iron Steel Res, 2011, 23(10): 15
|
[34] |
雷少武, 张炯明, 董其鹏, 等. 电磁搅拌对板坯表层大型夹杂物分布的影响. 工业加热, 2014, 43(4):23 doi: 10.3969/j.issn.1002-1639.2014.04.007
Lei S W, Zhang J M, Dong Q P, et al. Effect of electromagnetic stirring on the distribution of large inclusion in the surface layer. Ind Heat, 2014, 43(4): 23 doi: 10.3969/j.issn.1002-1639.2014.04.007
|
[35] |
Lan X K, Khodadadi J M. Fluid flow, heat transfer and solidification in the mold of continuous casters during ladle change. Int J Heat Mass Transf, 2001, 44(5): 953 doi: 10.1016/S0017-9310(00)00145-9
|
[36] |
Qiu S T, Liu H P, Peng S H, et al. Numerical analysis of thermal-driven buoyancy flow in the steady macro-solidification process of a continuous slab caster. ISIJ Int, 2004, 44(8): 1376 doi: 10.2355/isijinternational.44.1376
|
[37] |
Tian X Y, Zou F, Li B W, et al. Numerical analysis of coupled fluid flow, heat transfer and macroscopic solidification in the thin slab funnel shape mold with a new type EMBr. Metall Mater Trans B, 2010, 41(1): 112 doi: 10.1007/s11663-009-9314-3
|
[38] |
Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
|
[39] |
Trindade L B, Vilela A C F, Filho A F F, et al. Numerical model of electromagnetic stirring for continuous casting billets. IEEE Trans Magn, 2002, 38(6): 3658 doi: 10.1109/TMAG.2002.804804
|
[40] |
Liu H P, Xu M G, Qiu S T, et al. Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring. Metall Mater Trans B, 2012, 43(6): 1657 doi: 10.1007/s11663-012-9737-0
|
[41] |
Yu H Q, Zhu M Y. Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmak Steelmak, 2012, 39(8): 574 doi: 10.1179/0301923312Z.00000000058
|
[42] |
Smagorinsky J. General circulation experiments with the primitive equations. Mon Wea Rev, 1963, 91(3): 99 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
|
[43] |
Yuan Q, Vanka S P, Thomas B G, et al. Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster. Metall Mater Trans B, 2004, 35(5): 967
|
[44] |
Steinier J, Termonia Y, Deltour J. Smoothing and differentiation of data by simplified least square procedure. Anal Chem, 1972, 44(11): 1906 doi: 10.1021/ac60319a045
|
[45] |
Zhou H C, Zhang L F, Zhou Q Y, et al. Clogging-induced asymmetrical and transient flow pattern in a steel continuous casting slab strand measured using nail boards. Steel Res Int, 2021, 92(4): 2000547 doi: 10.1002/srin.202000547
|
[46] |
陈威, 周海忱, 王胜东, 等. 吹氩流量对结晶器流场影响的插钉工业试验. 钢铁, 2019, 54(8):102
Chen W, Zhou H C, Wang S D, et al. Nail board industrial experiment on effect of argon flow rate on mold flow field. Iron Steel, 2019, 54(8): 102
|
[47] |
宫武旗, 黄淑娟, 徐忠. 边界层中湍动能和耗散能最大的尺度分量特征研究. 航空学报, 2001, 22(4):293 doi: 10.3321/j.issn:1000-6893.2001.04.002
Gong W Q, Huang S J, Xu Z. Characteristics of scale components having maximal dynamic energy and dissipation energy in smooth turbulent boundary layer. Acta Aeronaut Astronaut Sin, 2001, 22(4): 293 doi: 10.3321/j.issn:1000-6893.2001.04.002
|
[48] |
刘心洪, 闵健, 潘春妹, 等. 采用大涡PIV方法研究搅拌槽内湍流动能耗散率. 过程工程学报, 2008, 8(3):425 doi: 10.3321/j.issn:1009-606X.2008.03.002
Liu X H, Min J, Pan C M, et al. Investigation of turbulence kinetic energy dissipation rate in a stirred tank using large eddy PIV approach. Chin J Process Eng, 2008, 8(3): 425 doi: 10.3321/j.issn:1009-606X.2008.03.002
|
[49] |
Cui L X, Lei X H, Zhang L F, et al. Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography. Metall Mater Trans B, 2021, 52(4): 2327 doi: 10.1007/s11663-021-02172-z
|