XING Yi, CUI Yong-kang, TIAN Jing-lei, SU Wei, WANG Wei-li, ZHANG Xi, LIU Yi, ZHAO Xiu-juan. Application status and prospect of low carbon technology in iron and steel industry[J]. Chinese Journal of Engineering, 2022, 44(4): 801-811. DOI: 10.13374/j.issn2095-9389.2021.08.01.001
Citation: XING Yi, CUI Yong-kang, TIAN Jing-lei, SU Wei, WANG Wei-li, ZHANG Xi, LIU Yi, ZHAO Xiu-juan. Application status and prospect of low carbon technology in iron and steel industry[J]. Chinese Journal of Engineering, 2022, 44(4): 801-811. DOI: 10.13374/j.issn2095-9389.2021.08.01.001

Application status and prospect of low carbon technology in iron and steel industry

More Information
  • Corresponding author:

    SU Wei, E-mail: suwei3007@163.com

  • Received Date: July 31, 2021
  • Available Online: September 17, 2021
  • Published Date: April 01, 2022
  • China proposes to achieve carbon peaking and carbon neutralization by 2030 and 2060, respectively. As a heavily carbon-based fuel industry, the carbon dioxide emission of the iron and steel industry is lower than that of the power and transportation industries. In 2020, the carbon dioxide emissions of China’s steel industry were approximately 1.98 billion tons, accounting for more than 18% of the national carbon dioxide emissions. To achieve the “carbon neutral” emission reduction target of the steel industry, the three parts of the entire process of steel production, i.e., “source–process–end,” need to be involved in the exploration of low-carbon technologies. This study summarized the low-carbon technology measures of foreign low-carbon dioxide emission projects and major domestic steel companies’ carbon peaking and carbon neutralization projects; divided and classified the low-carbon technologies in today’s steel industry from three levels, i.e., carbon dioxide emission reduction, zero carbon dioxide emission, and negative carbon dioxide emission; and summarized the carbon dioxide emission reduction, maturity, and promotion time of each low-carbon technology. In terms of carbon dioxide emission reduction, carbon dioxide emissions in the production process of the steel industry were reduced by optimizing processes and process reengineering, such as blast furnace top gas circulation technology. In terms of zero carbon dioxide emissions, hydrogen or clean electricity was used to reduce or replace coal or coke with high carbon dioxide emission factors to reduce carbon dioxide emissions from the source, such as hydrogen metallurgical technology. In terms of negative carbon dioxide emissions, carbon dioxide capture was mainly conducted in the high carbon dioxide emission intensity blast furnace ironmaking process, green recycling was performed in the steel plant, and chemical coproduction was implemented outside the plant to produce high value-added chemical products, such as methanol and ethanol. Finally, geological storage of carbon dioxide on steel near the oil field was implemented to reduce carbon dioxide emissions.
  • [1]
    国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报. 中国统计, 2021(3):8

    National Bureau of Statistics. Statistical communiqué of the People’s Republic of China on the 2020 national economic and social development. China Stat, 2021(3): 8
    [2]
    Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci, 2018, 11(5): 1062 doi: 10.1039/C7EE02342A
    [3]
    Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. J Clean Prod, 2021, 306: 127259 doi: 10.1016/j.jclepro.2021.127259
    [4]
    Quader M A, Ahmed S, Ghazilla R A R, et al. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable Sustainable Energy Rev, 2015, 50: 594 doi: 10.1016/j.rser.2015.05.026
    [5]
    严珺洁. 超低二氧化碳排放炼钢项目的进展与未来. 中国冶金, 2017, 27(2):6

    Yan J J. Progress and future of ultra-low CO2 steel making program. China Metall, 2017, 27(2): 6
    [6]
    王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁低碳发展的意义. 中国冶金, 2019, 29(10):1

    Wang G, Wang J S, Zuo H B, et al. Effect of blast furnace gas recycling with hydrogen injection on low carbon development of Chinese ironmaking. China Metall, 2019, 29(10): 1
    [7]
    薛庆国, 杨帆, 张欣欣, 等. 氧气高炉的发展历程及其在北京科技大学的研究进展. 工程科学学报, 2021, 43(12):1577

    Xue Q G, Yang F, Zhang X X, et al. Development of oxygen blast furnace and its research progress in Beijing University of science and technology. Chin J Eng, 2021, 43(12): 1577
    [8]
    姚聪林, 朱红春, 姜周华, 等. 全废钢连续加料电弧炉短流程碳排放计算及分析. 材料与冶金学报, 2020, 19(4):259

    Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259
    [9]
    程威. 中国电炉市场与长材连铸连轧. 冶金经济与管理, 2020(1):22

    Cheng W. The EAF market and the continuous casting and rolling of long products. Metall Econ Manage, 2020(1): 22
    [10]
    阮清华, 白苗苗. 我国长流程炼钢与短流程炼钢成本比较. 中国钢铁业, 2019(10):58 doi: 10.3969/j.issn.1672-5115.2019.10.018

    Ruan Q H, Bai M M. Comparison of my country’s long-process steelmaking and short-process steelmaking costs. China Steel, 2019(10): 58 doi: 10.3969/j.issn.1672-5115.2019.10.018
    [11]
    王新江. 中国电炉炼钢的技术进步. 钢铁, 2019, 54(8):1

    Wang X J. Technological progress of EAF steelmaking in China. Iron Steel, 2019, 54(8): 1
    [12]
    姜周华, 姚聪林, 朱红春, 等. 电弧炉炼钢技术的发展趋势. 钢铁, 2020, 55(7):1

    Jiang Z H, Yao C L, Zhu H C, et al. Technology development trend in electric arc furnace steelmaking. Iron Steel, 2020, 55(7): 1
    [13]
    李彬. 基于氢气直接还原铁冶炼高纯铁和高纯轴承钢的基础研究[学位论文]. 北京: 北京科技大学, 2020

    Li B. Fundamental Study on the Smelting High-Purity Iron and High-Purity Bearing Steel Using Direct Reduced Iron Prepared by Hydrogen [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [14]
    周翔. 直接还原工艺综述及发展分析. 冶金经济与管理, 2017(4):53 doi: 10.3969/j.issn.1002-1779.2017.04.016

    Zhou X. Overview and development analysis of direct reduction process. Metall Econ Manage, 2017(4): 53 doi: 10.3969/j.issn.1002-1779.2017.04.016
    [15]
    宋赞, 李相帅, 查春和. 我国直接还原铁工艺的发展现状及趋势. 冶金管理, 2020(16):22

    Song Z, Li X S, Zha C H. Development status and trend of direct reduction iron technology in my country. China Steel Focus, 2020(16): 22
    [16]
    石禹. 世界直接还原铁产量首次超过亿吨. 冶金管理, 2020(18):30

    Shi Y. The world's direct reduced iron production exceeded 100 million tons for the first time. China Steel Focus, 2020(18): 30
    [17]
    应自伟, 储满生, 唐珏, 等. 非高炉炼铁工艺现状及未来适应性分析. 河北冶金, 2019(6):1

    Ying Z W, Chu M S, Tang J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process. Hebei Metall, 2019(6): 1
    [18]
    Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable Sustainable Energy Rev, 2021, 143: 110846 doi: 10.1016/j.rser.2021.110846
    [19]
    唐珏, 储满生, 李峰, 等. 我国氢冶金发展现状及未来趋势. 河北冶金, 2020(8):1

    Tang J, Chu M S, Li F, et al. Development status and future trend of hydrogen metallurgy in China. Hebei Metall, 2020(8): 1
    [20]
    Yilmaz C, Wendelstorf J, Turek T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions. J Clean Prod, 2017, 154: 488 doi: 10.1016/j.jclepro.2017.03.162
    [21]
    赵毅, 王永斌, 王添颢. 有机胺法吸收二氧化碳的研究进展. 再生资源与循环经济, 2020, 13(7):26 doi: 10.3969/j.issn.1674-0912.2020.07.009

    Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method. Recycl Resour Circ Econ, 2020, 13(7): 26 doi: 10.3969/j.issn.1674-0912.2020.07.009
    [22]
    李建光, 李进中, 钦柏豪. 模拟钢铁行业烟气中CO2捕获与解析实验研究. 能源环境保护, 2019, 33(5):23 doi: 10.3969/j.issn.1006-8759.2019.05.005

    Li J G, Li J Z, Qin B H. Simulation of carbon dioxide capture and desorption in steel industry flue gas. Energy Environ Prot, 2019, 33(5): 23 doi: 10.3969/j.issn.1006-8759.2019.05.005
    [23]
    张培昆, 张震威, 王立. 用于CO2捕集的新型石灰煅烧过程的数值分析. 工程科学学报,https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002

    Zhang P K, Zhang Z W, Wang L. Numerical analysis of novel lime calcination process for CO2 capture. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002
    [24]
    朱荣, 王雪亮, 刘润藻. 二氧化碳在钢铁冶金流程应用研究现状与展望. 中国冶金, 2017, 27(4):1

    Zhu R, Wang X L, Liu R Z. Recent progress and prospective of application of carbon dioxide in ferrous metallurgy process. China Metall, 2017, 27(4): 1
    [25]
    吴志连, 王辉, 杨培志, 等. 钢铁工业尾气制无水乙醇商业进展. 中国新技术新产品, 2019(13):133 doi: 10.3969/j.issn.1673-9957.2019.13.077

    Wu Z L, Wang H, Yang P Z, et al. Commercial progress in the production of absolute ethanol from tail gas in the iron and steel industry. New Technol New Prod China, 2019(13): 133 doi: 10.3969/j.issn.1673-9957.2019.13.077
    [26]
    Budinis S, Krevor S, Mac Dowell N, et al. An assessment of CCS costs, barriers and potential. Energy Strategy Rev, 2018, 22: 61
    [27]
    桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评. 煤田地质与勘探, 2018, 46(5):1 doi: 10.3969/j.issn.1001-1986.2018.05.001

    Sang S X. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery. Coal Geol Explor, 2018, 46(5): 1 doi: 10.3969/j.issn.1001-1986.2018.05.001
    [28]
    王保登, 赵兴雷, 崔倩, 等. 中国神华煤制油深部咸水层CO2地质封存示范项目监测技术分析. 环境工程, 2018, 36(2):33

    Wang B D, Zhao X L, Cui Q, et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project. Environ Eng, 2018, 36(2): 33

Catalog

    Article Metrics

    Article views (2706) PDF downloads (416) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return