Citation: | XING Yi, CUI Yong-kang, TIAN Jing-lei, SU Wei, WANG Wei-li, ZHANG Xi, LIU Yi, ZHAO Xiu-juan. Application status and prospect of low carbon technology in iron and steel industry[J]. Chinese Journal of Engineering, 2022, 44(4): 801-811. DOI: 10.13374/j.issn2095-9389.2021.08.01.001 |
[1] |
国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报. 中国统计, 2021(3):8
National Bureau of Statistics. Statistical communiqué of the People’s Republic of China on the 2020 national economic and social development. China Stat, 2021(3): 8
|
[2] |
Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci, 2018, 11(5): 1062 doi: 10.1039/C7EE02342A
|
[3] |
Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. J Clean Prod, 2021, 306: 127259 doi: 10.1016/j.jclepro.2021.127259
|
[4] |
Quader M A, Ahmed S, Ghazilla R A R, et al. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable Sustainable Energy Rev, 2015, 50: 594 doi: 10.1016/j.rser.2015.05.026
|
[5] |
严珺洁. 超低二氧化碳排放炼钢项目的进展与未来. 中国冶金, 2017, 27(2):6
Yan J J. Progress and future of ultra-low CO2 steel making program. China Metall, 2017, 27(2): 6
|
[6] |
王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁低碳发展的意义. 中国冶金, 2019, 29(10):1
Wang G, Wang J S, Zuo H B, et al. Effect of blast furnace gas recycling with hydrogen injection on low carbon development of Chinese ironmaking. China Metall, 2019, 29(10): 1
|
[7] |
薛庆国, 杨帆, 张欣欣, 等. 氧气高炉的发展历程及其在北京科技大学的研究进展. 工程科学学报, 2021, 43(12):1577
Xue Q G, Yang F, Zhang X X, et al. Development of oxygen blast furnace and its research progress in Beijing University of science and technology. Chin J Eng, 2021, 43(12): 1577
|
[8] |
姚聪林, 朱红春, 姜周华, 等. 全废钢连续加料电弧炉短流程碳排放计算及分析. 材料与冶金学报, 2020, 19(4):259
Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259
|
[9] |
程威. 中国电炉市场与长材连铸连轧. 冶金经济与管理, 2020(1):22
Cheng W. The EAF market and the continuous casting and rolling of long products. Metall Econ Manage, 2020(1): 22
|
[10] |
阮清华, 白苗苗. 我国长流程炼钢与短流程炼钢成本比较. 中国钢铁业, 2019(10):58 doi: 10.3969/j.issn.1672-5115.2019.10.018
Ruan Q H, Bai M M. Comparison of my country’s long-process steelmaking and short-process steelmaking costs. China Steel, 2019(10): 58 doi: 10.3969/j.issn.1672-5115.2019.10.018
|
[11] |
王新江. 中国电炉炼钢的技术进步. 钢铁, 2019, 54(8):1
Wang X J. Technological progress of EAF steelmaking in China. Iron Steel, 2019, 54(8): 1
|
[12] |
姜周华, 姚聪林, 朱红春, 等. 电弧炉炼钢技术的发展趋势. 钢铁, 2020, 55(7):1
Jiang Z H, Yao C L, Zhu H C, et al. Technology development trend in electric arc furnace steelmaking. Iron Steel, 2020, 55(7): 1
|
[13] |
李彬. 基于氢气直接还原铁冶炼高纯铁和高纯轴承钢的基础研究[学位论文]. 北京: 北京科技大学, 2020
Li B. Fundamental Study on the Smelting High-Purity Iron and High-Purity Bearing Steel Using Direct Reduced Iron Prepared by Hydrogen [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[14] |
周翔. 直接还原工艺综述及发展分析. 冶金经济与管理, 2017(4):53 doi: 10.3969/j.issn.1002-1779.2017.04.016
Zhou X. Overview and development analysis of direct reduction process. Metall Econ Manage, 2017(4): 53 doi: 10.3969/j.issn.1002-1779.2017.04.016
|
[15] |
宋赞, 李相帅, 查春和. 我国直接还原铁工艺的发展现状及趋势. 冶金管理, 2020(16):22
Song Z, Li X S, Zha C H. Development status and trend of direct reduction iron technology in my country. China Steel Focus, 2020(16): 22
|
[16] |
石禹. 世界直接还原铁产量首次超过亿吨. 冶金管理, 2020(18):30
Shi Y. The world's direct reduced iron production exceeded 100 million tons for the first time. China Steel Focus, 2020(18): 30
|
[17] |
应自伟, 储满生, 唐珏, 等. 非高炉炼铁工艺现状及未来适应性分析. 河北冶金, 2019(6):1
Ying Z W, Chu M S, Tang J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process. Hebei Metall, 2019(6): 1
|
[18] |
Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable Sustainable Energy Rev, 2021, 143: 110846 doi: 10.1016/j.rser.2021.110846
|
[19] |
唐珏, 储满生, 李峰, 等. 我国氢冶金发展现状及未来趋势. 河北冶金, 2020(8):1
Tang J, Chu M S, Li F, et al. Development status and future trend of hydrogen metallurgy in China. Hebei Metall, 2020(8): 1
|
[20] |
Yilmaz C, Wendelstorf J, Turek T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions. J Clean Prod, 2017, 154: 488 doi: 10.1016/j.jclepro.2017.03.162
|
[21] |
赵毅, 王永斌, 王添颢. 有机胺法吸收二氧化碳的研究进展. 再生资源与循环经济, 2020, 13(7):26 doi: 10.3969/j.issn.1674-0912.2020.07.009
Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method. Recycl Resour Circ Econ, 2020, 13(7): 26 doi: 10.3969/j.issn.1674-0912.2020.07.009
|
[22] |
李建光, 李进中, 钦柏豪. 模拟钢铁行业烟气中CO2捕获与解析实验研究. 能源环境保护, 2019, 33(5):23 doi: 10.3969/j.issn.1006-8759.2019.05.005
Li J G, Li J Z, Qin B H. Simulation of carbon dioxide capture and desorption in steel industry flue gas. Energy Environ Prot, 2019, 33(5): 23 doi: 10.3969/j.issn.1006-8759.2019.05.005
|
[23] |
张培昆, 张震威, 王立. 用于CO2捕集的新型石灰煅烧过程的数值分析. 工程科学学报,https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002
Zhang P K, Zhang Z W, Wang L. Numerical analysis of novel lime calcination process for CO2 capture. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002
|
[24] |
朱荣, 王雪亮, 刘润藻. 二氧化碳在钢铁冶金流程应用研究现状与展望. 中国冶金, 2017, 27(4):1
Zhu R, Wang X L, Liu R Z. Recent progress and prospective of application of carbon dioxide in ferrous metallurgy process. China Metall, 2017, 27(4): 1
|
[25] |
吴志连, 王辉, 杨培志, 等. 钢铁工业尾气制无水乙醇商业进展. 中国新技术新产品, 2019(13):133 doi: 10.3969/j.issn.1673-9957.2019.13.077
Wu Z L, Wang H, Yang P Z, et al. Commercial progress in the production of absolute ethanol from tail gas in the iron and steel industry. New Technol New Prod China, 2019(13): 133 doi: 10.3969/j.issn.1673-9957.2019.13.077
|
[26] |
Budinis S, Krevor S, Mac Dowell N, et al. An assessment of CCS costs, barriers and potential. Energy Strategy Rev, 2018, 22: 61
|
[27] |
桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评. 煤田地质与勘探, 2018, 46(5):1 doi: 10.3969/j.issn.1001-1986.2018.05.001
Sang S X. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery. Coal Geol Explor, 2018, 46(5): 1 doi: 10.3969/j.issn.1001-1986.2018.05.001
|
[28] |
王保登, 赵兴雷, 崔倩, 等. 中国神华煤制油深部咸水层CO2地质封存示范项目监测技术分析. 环境工程, 2018, 36(2):33
Wang B D, Zhao X L, Cui Q, et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project. Environ Eng, 2018, 36(2): 33
|