Citation: | WANG En-hui, YANG Ya-kun, HOU Xin-mei. Current research and development on the oxidation kinetics of nonoxide ceramics[J]. Chinese Journal of Engineering, 2022, 44(4): 654-663. DOI: 10.13374/j.issn2095-9389.2021.05.29.002 |
[1] |
王恩会, 陈俊红, 侯新梅. 钢包工作衬用耐火材料的研究现状及最新进展. 工程科学学报, 2019, 41(6):695
Wang E H, Chen J H, Hou X M. Current research and latest developments on refractories used as ladle linings. Chin J Eng, 2019, 41(6): 695
|
[2] |
甄强, 鲁飞, 宋绍雷, 等. 纳米SiC对C/C复合材料石墨化与抗氧化性能的影响规律. 工程科学学报, 2017, 39(1):81
Zhen Q, Lu F, Song S L, et al. Influence of nano-SiC on the graphitization and oxidation resistance of C/C composites. Chin J Eng, 2017, 39(1): 81
|
[3] |
赵春阳, 王恩会, 侯新梅. SiC半导体不同晶面氧化机理及动力学的研究进展. 工程科学学报, 2021, 43(5):594
Zhao C Y, Wang E H, Hou X M. Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces. Chin J Eng, 2021, 43(5): 594
|
[4] |
Jander W. Reactions in solid states at high temperature. I. Announcement the rate of reaction in endothermic conversions. Z Anorg Allgem Chem, 1927, 163(1): 1 (Jander W. Reaktionen im festen zustande bei höheren temperaturen. I. Reaktionsgeschwindigkeiten endotherm verlaufender umsetzungen. Z Anorg Allgem Chem, 1927, 163(1): 1)
|
[5] |
Khawam A, Flanagan D R. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B, 2006, 110(35): 17315 doi: 10.1021/jp062746a
|
[6] |
Carter R E. Kinetic model for solid-state reactions. J Chem Phys, 1961, 34(6): 2010 doi: 10.1063/1.1731812
|
[7] |
Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36(12): 3770 doi: 10.1063/1.1713945
|
[8] |
Tedmon C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe–Cr alloys. J Electrochem Soc, 1966, 113(8): 766 doi: 10.1149/1.2424115
|
[9] |
Opila E J, Jacobson N S. SiO(g) formation from SiC in mixed oxidizing-reducing gases. Oxid Met, 1995, 44(5-6): 527 doi: 10.1007/BF01051042
|
[10] |
Beke D L, Szabó I A, Erdélyi Z, et al. Diffusion-induced stresses and their relaxation. Mater Sci Eng:A, 2004, 387-389: 4 doi: 10.1016/j.msea.2004.01.065
|
[11] |
Bull S J. Modeling of residual stress in oxide scales. Oxid Met, 1998, 49: 1 doi: 10.1023/A:1018822222663
|
[12] |
Clarke D R. Stress generation during high-temperature oxidation of metallic alloys. Curr Opin Solid State Mater Sci, 2002, 6(3): 237 doi: 10.1016/S1359-0286(02)00074-8
|
[13] |
Li X Y, Ermakov A, Amarasinghe V, et al. Oxidation induced stress in SiO2/SiC structures. Appl Phys Lett, 2017, 110(14): 141604 doi: 10.1063/1.4979544
|
[14] |
陈晓雨, 文钰斌, 陈浩, 等. 易氧化材料的应力–氧化研究进展. 耐火材料, 2018, 52(1):75 doi: 10.3969/j.issn.1001-1935.2018.01.019
Chen X Y, Wen Y B, Chen H, et al. Stress–oxidation research progress of easily oxidized materials. Refractories, 2018, 52(1): 75 doi: 10.3969/j.issn.1001-1935.2018.01.019
|
[15] |
Dong X L, Fang X F, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc, 2013, 96(1): 44 doi: 10.1111/jace.12105
|
[16] |
Yue M K, Dong X L, Fang X F, et al. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. J Appl Phys, 2018, 123(15): 155301 doi: 10.1063/1.5025149
|
[17] |
Chou K C. A kinetic model for oxidation of Si–Al–O–N materials. J Am Ceram Soc, 2006, 89(5): 1568 doi: 10.1111/j.1551-2916.2006.00959.x
|
[18] |
Chou K C, Hou X M. Kinetics of high-temperature oxidation of inorganic nonmetallic materials. J Am Ceram Soc, 2009, 92(3): 585 doi: 10.1111/j.1551-2916.2008.02903.x
|
[19] |
Wang E H, Chen J H, Hu X J, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature. J Am Ceram Soc, 2016, 99(8): 2699 doi: 10.1111/jace.14274
|
[20] |
王习东. AlON及MeAlON陶瓷的性能与结构[学位论文]. 北京: 北京科技大学, 2001
Wang X D. The Performance and Structure of AlON and MeAlON Ceramics [Dissertation]. Beijing: University of Science and Technology Beijing, 2001
|
[21] |
Chou K C, Xu K D. A new model for hydriding and dehydriding reactions in intermetallics. Intermetallics, 2007, 15(5-6): 767 doi: 10.1016/j.intermet.2006.10.004
|
[22] |
Hou X M, Chou K C, Li F S. Some new perspectives on oxidation kinetics of SiAlON materials. J Eur Ceram Soc, 2008, 28(6): 1243 doi: 10.1016/j.jeurceramsoc.2007.09.041
|
[23] |
Ramberg C E, Cruciani G, Spear K E, et al. Passive-oxidation kinetics of high-purity silicon carbide from 800 ℃ to 1100 ℃. J Am Ceram Soc, 1996, 79(11): 2897 doi: 10.1111/j.1151-2916.1996.tb08724.x
|
[24] |
Opila E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure. J Am Ceram Soc, 1999, 82(3): 625
|
[25] |
Wang Y G, Ma B S, Li L L, et al. Oxidation behavior of ZrB2−SiC−TaC ceramics. J Am Ceram Soc, 2012, 95(1): 374 doi: 10.1111/j.1551-2916.2011.04945.x
|
[26] |
Nasiri N A, Patra N, Ni N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air. J Eur Ceram Soc, 2016, 36(14): 3293 doi: 10.1016/j.jeurceramsoc.2016.05.051
|
[27] |
周长海. 几种金属材料在压应力及强磁场下的高温氧化[学位论文]. 大连: 大连理工大学, 2009
Zhou C H. High Temperature Oxidation Behaviors of Several Metallic Materials in the Presence of External Compressive Stress or High Magnetic Field [Dissertation]. Dalian: Dalian University of Technology, 2009
|
[28] |
Barvosa-Carter W, Aziz M J, Gray L J, et al. Kinetically driven growth instability in stressed solids. Phys Rev Lett, 1998, 81(7): 1445 doi: 10.1103/PhysRevLett.81.1445
|
[29] |
Haftbaradaran H, Gao H J, Curtin W A. A surface locking instability for atomic intercalation into a solid electrode. Appl Phys Lett, 2010, 96(9): 091909 doi: 10.1063/1.3330940
|
[30] |
Xiao X, Liu P, Verbrugge M W, et al. Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J Power Sources, 2011, 196(3): 1409 doi: 10.1016/j.jpowsour.2010.08.058
|
[31] |
Coffin H, Bonafos C, Schamm S, et al. Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers. J Appl Phys, 2006, 99(4): 044302 doi: 10.1063/1.2171785
|
[32] |
Limarga A M, Wilkinson D S, Weatherly G C. Modeling of oxidation-induced growth stresses. Scr Mater, 2004, 50(12): 1475 doi: 10.1016/j.scriptamat.2004.03.001
|
[33] |
Ogbuji L U J T, Opila E J. A comparison of the oxidation kinetics of SiC and Si3N4. J Electrochem Soc, 1995, 142(3): 925 doi: 10.1149/1.2048559
|
[34] |
Suo Y H, Shen S P. General approach on chemistry and stress coupling effects during oxidation. J Appl Phys, 2013, 114(16): 164905 doi: 10.1063/1.4826530
|
[35] |
Haftbaradaran H, Song J, Curtin W A, et al. Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J Power Sources, 2011, 196(1): 361 doi: 10.1016/j.jpowsour.2010.06.080
|
[36] |
Dong X L, Fang X F, Feng X, et al. Oxidation at high temperature under three-point bending considering stress-diffusion coupling effects. Oxid Met, 2016, 86(1-2): 125 doi: 10.1007/s11085-016-9626-z
|
[37] |
Gauthier W, Pailler F, Lamon J, et al. Oxidation of silicon carbide fibers during static fatigue in air at intermediate temperatures. J Am Ceram Soc, 2009, 92(9): 2067 doi: 10.1111/j.1551-2916.2009.03180.x
|