ZHANG Pei-kun, ZHANG Zhen-wei, WANG Li. Numerical analysis of the novel lime calcination process for carbon dioxide capture[J]. Chinese Journal of Engineering, 2022, 44(11): 1978-1987. DOI: 10.13374/j.issn2095-9389.2021.03.22.002
Citation: ZHANG Pei-kun, ZHANG Zhen-wei, WANG Li. Numerical analysis of the novel lime calcination process for carbon dioxide capture[J]. Chinese Journal of Engineering, 2022, 44(11): 1978-1987. DOI: 10.13374/j.issn2095-9389.2021.03.22.002

Numerical analysis of the novel lime calcination process for carbon dioxide capture

More Information
  • Corresponding author:

    ZHANG Pei-kun, E-mail: pkzhang@ustb.edu.cn

  • Received Date: March 21, 2021
  • Available Online: May 25, 2021
  • Published Date: October 31, 2022
  • Lime is an important industrial raw material widely used in iron- and steel-making, flue gas desulfurization, construction, and papermaking industries. Lime is generally obtained via calcining limestone in a kiln, i.e., limestone is heated and decomposed to generate lime and carbon dioxide (CO2). In the conventional lime calcination, the CO2 released by the limestone decomposition is mixed with the flue gas because the fuel is burned in the shaft kiln, requiring gas separation for CO2 capture. The new lime calcination process using CO2 as a circulating carrier gas to heat limestone particles can avoid the above mixing problem, thereby directly capturing the CO2 generated by limestone decomposition, which is expected to reduce carbon emissions from lime production by approximately 70%. However, the new calcination process based on CO2 heating is quite different from the conventional calcination process. To understand the new calcination process and accurately design and optimize it, a mathematical model of the lime calcination process based on CO2 heating was established. Based on the model, a shaft kiln with a capacity of 200 t·d−1 was simulated and calculated. In addition, profiles of key parameters such as the gas-solid temperature difference, gas flow rate, gas temperature, particle surface temperature, reacting interface temperature, and conversion ratio in the shaft kiln were obtained. Besides, the three operating parameters (feed gas temperature, feed gas flow rate, and radius of the feeding limestone particle) on the calcination were analyzed. The following observations were made: (1) the lower the feed gas temperature, the lower are the final conversion ratio, pinch temperature difference, and tail gas temperature of the kiln. In addition, the changing trend of the final conversion ratio and pinch temperature difference conforms to a quadratic polynomial law, and the changing trend of the tail gas temperature conforms to a linear law. (2) The lower the feed gas flow rate, the lower are the final conversion ratio, pinch temperature difference, and tail gas temperature of the kiln. Moreover, the changing trend of each parameter conforms to a quadratic polynomial law. (3) Finally, the larger the radius of the feeding limestone particle, the lower is the final conversion ratio of the kiln, the higher is the tail gas temperature, and the greater is the pinch temperature difference. The changing trends of various parameters conform to cubic polynomial laws. Compared with the feed gas temperature and the feed gas flow rate, the radius of the feeding limestone particle has a greater impact on the pinch temperature difference and the tail gas temperature when the final conversion ratio changes in the same range.
  • [1]
    郭汉杰. 活性石灰生产理论与工艺. 北京: 化学工业出版社, 2014

    Guo H J. Theory and Technology of Active Lime Production. Beijing: Chemical Industry Press, 2014
    [2]
    Rong W J, Li B K, Qi F S, et al. Energy and exergy analysis of an annular shaft kiln with opposite burners. Appl Therm Eng, 2017, 119: 629 doi: 10.1016/j.applthermaleng.2017.03.090
    [3]
    Hallak B, Herz F, Specht E, et al. Simulation of limestone calcination in normal shaft kilns-mathematical model. ZKG Int, 2015, 68(9): 66
    [4]
    An R, Yu B, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044
    [5]
    姜娟娟, 董凯, 朱荣, 等. 二氧化碳绿色洁净炼钢技术及应用. 工程科学学报.https://doi.org/10.13374/j.issn2095-9389.2021.09.23.002

    Jiang J J, Dong K, Zhu R, et al. Carbon dioxide green and clean steelmaking technology and its application. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.09.23.002
    [6]
    Shan Y L, Liu Z, Guan D B. CO2 emissions from China’s lime industry. Appl Energy, 2016, 166: 245 doi: 10.1016/j.apenergy.2015.04.091
    [7]
    国家统计局. 中国统计年鉴. 中国统计出版社, 2019

    National Bureau of Statistic. China Statistical Year Book. Beijing: China Statistics Press, 2019
    [8]
    Gutiérrez A S, Martínez J B C, Vandecasteele C. Energy and exergy assessments of a lime shaft kiln. Appl Therm Eng, 2013, 51(1-2): 273 doi: 10.1016/j.applthermaleng.2012.07.013
    [9]
    王莹莹, 钟小剑. 中国2004—2015年间石灰工业的CO2排放. 亚热带资源与环境学报, 2018, 13(2):7 doi: 10.3969/j.issn.1673-7105.2018.02.003

    Wang Y Y, Zhong X J. CO2 emissions and influencing factors in China’s lime industry. J Subtrop Resour Environ, 2018, 13(2): 7 doi: 10.3969/j.issn.1673-7105.2018.02.003
    [10]
    初建民, 高士林. 冶金石灰生产技术手册. 北京: 冶金工业出版社, 2009

    Chu J M, Gao S L. Manual of Metallurgical Lime Production Technology. Beijing: Metallurgical Industry Press, 2009
    [11]
    Hallak B, Herz F, Specht E, et al. Simulation of limestone calcination in normal shaft kilns–Part 2: Influence of process parameters. ZKG Int, 2015, 68(10): 46
    [12]
    Hallak B, Specht E, Herz F, et al. Influence of particle size distribution on the limestone decomposition in single shaft kilns. Energy Procedia, 2017, 120: 604 doi: 10.1016/j.egypro.2017.07.192
    [13]
    Senegačnik A, Oman J, Širok B. Annular shaft kiln for lime burning with kiln gas recirculation. Appl Therm Eng, 2008, 28(7): 785 doi: 10.1016/j.applthermaleng.2007.04.015
    [14]
    周乃君, 易正明, 周萍, 等. 石灰炉炉内过程数值仿真. 中南工业大学学报(自然科学版), 2000, 31(5):422

    Zhou N J, Yi Z M, Zhou P, et al. Numerical simulation of the processes in lime furnace. J Central South Univ Nat Sci, 2000, 31(5): 422
    [15]
    Shagapov V S, Burkin M V, Voronin A V, et al. Calculation of limestone burning in a coke-fired kiln. Theor Found Chem Eng, 2004, 38(4): 440 doi: 10.1023/B:TFCE.0000036974.32157.89
    [16]
    Bes A. Dynamic Process Simulation of Limestone Calcination in Normal Shaft Kilns [Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2006
    [17]
    Marias F, Bruyères B. Modelling of a biomass fired furnace for production of lime. Chem Eng Sci, 2009, 64(15): 3417 doi: 10.1016/j.ces.2009.04.022
    [18]
    Do D H, Specht E. Numerical simulation of heat and mass transfer of limestone decomposition in normal shaft kiln // Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, 2011: T10060
    [19]
    Gutiérrez A S, Vandecasteele C. Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production. Energy, 2011, 36(5): 2820 doi: 10.1016/j.energy.2011.02.023
    [20]
    崔春, 陈永范, 王云波. 气烧石灰竖窑内温度场的数值模拟. 辽宁科技大学学报, 2014, 37(3):247 doi: 10.3969/j.issn.1674-1048.2014.03.006

    Cui C, Chen Y F, Wang Y B. Numerical simulation of temperature field in gas burning shaft lime kiln. J Univ Sci Technol Liaoning, 2014, 37(3): 247 doi: 10.3969/j.issn.1674-1048.2014.03.006
    [21]
    Do D H. Simulation of Lime Calcination in Normal Shaft a Parallel Flow Regenerative Kilns [Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2012
    [22]
    El-Fakharany M K M. Process Simulation of Lime Calcination in Mixed Feed Shaft Kilns[Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2012
    [23]
    Senegačnik A, Oman J, Širok B. Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: Theoretical survey. Appl Therm Eng, 2007, 27(8-9): 1467 doi: 10.1016/j.applthermaleng.2006.10.001
    [24]
    刘国辉, 崔国民, 谢斌, 等. 并流蓄热式双膛石灰窑煅烧过程数值模拟研究. 热能动力工程, 2019, 34(6):100

    Liu G H, Cui G M, Xie B, et al. Numerical simulation study on the calcination process of a dual-chamber lime kiln with parallel heat storage. J Eng Therm Energy Power, 2019, 34(6): 100
    [25]
    Bluhm-Drenhaus T, Simsek E, Wirtz S, et al. A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln. Chem Eng Sci, 2010, 65(9): 2821 doi: 10.1016/j.ces.2010.01.015
    [26]
    Krause B, Liedmann B, Wiese J, et al. Coupled three dimensional DEM–CFD simulation of a lime shaft kiln—Calcination, particle movement and gas phase flow field. Chem Eng Sci, 2015, 134: 834 doi: 10.1016/j.ces.2015.06.002
    [27]
    Krause B, Liedmann B, Wiese J, et al. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln. Int J Therm Sci, 2017, 117: 121 doi: 10.1016/j.ijthermalsci.2017.03.017
    [28]
    Iliuta I, Dam-Johansen K, Jensen L S. Mathematical modeling of an in-line low-NOx calciner. Chem Eng Sci, 2002, 57(5): 805 doi: 10.1016/S0009-2509(01)00420-1
    [29]
    Chuan C, Specht E, Kehse G. Influences of the origin and material properties of limestone on its decomposition behaviour in shaft kilns. ZKG Int, 2007, 60(1): 51
    [30]
    周筠清. 传热学. 北京: 冶金工业出版社, 1999

    Zhou J Q. Heat Trasfer. Beijing: Metallurgical Industry Press, 1999
  • Cited by

    Periodical cited type(2)

    1. 黄文,王雷,王剑锋,王敏,包婷婷,余杨. 活性氧化钙绿色低碳制备国内外发展现状及展望. 中国建材科技. 2024(01): 23-26 .
    2. 邢奕,崔永康,田京雷,苏伟,王伟丽,张熙,刘义,赵秀娟. 钢铁行业低碳技术应用现状与展望. 工程科学学报. 2022(04): 801-811 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1088) PDF downloads (129) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return