SUN Hao, CHEN Shuai-jun, GAO Yan-hua, JIN Ai-bing, QIN Xuan, JU You, YIN Ze-song, LI Mu-ya, ZHAO Zeng-shan. Research on near/far-field flow characteristics of caved ore and rock based on rigid block model[J]. Chinese Journal of Engineering, 2021, 43(2): 205-214. DOI: 10.13374/j.issn2095-9389.2020.10.23.003
Citation: SUN Hao, CHEN Shuai-jun, GAO Yan-hua, JIN Ai-bing, QIN Xuan, JU You, YIN Ze-song, LI Mu-ya, ZHAO Zeng-shan. Research on near/far-field flow characteristics of caved ore and rock based on rigid block model[J]. Chinese Journal of Engineering, 2021, 43(2): 205-214. DOI: 10.13374/j.issn2095-9389.2020.10.23.003

Research on near/far-field flow characteristics of caved ore and rock based on rigid block model

More Information
  • Corresponding author:

    JIN Ai-bing, E-mail: jinaibing@ustb.edu.cn

  • Received Date: October 22, 2020
  • Available Online: January 11, 2021
  • Published Date: February 25, 2021
  • The high mining costs of mines have led to the imbalance between the supply and demand of the total mineral resources in China and the dependence on imports to a large extent. Therefore, it is of great significance to expand the mining scale of mineral resources and reduce the mining costs to improve the self-sufficiency rate of mineral resources and strengthen social support and economic development in China. The caving mining method, especially the block caving method, has the following two main characteristics: one is that caved ores, surrounded by overlying rocks, are drawn from the drawpoint and the other one is that ground pressure is managed by filling goaf with overlying rocks. It is a low-cost and efficient large-scale underground mining method and has been widely used in metal mines around the world. To further reveal the far-field field migration and evolution mechanism of caved ore and rock in metal mine, through physical test, numerical simulation, and theoretical analysis, isolated-drawpoint draw models were constructed to study the flow characteristics of near/far-field flow characteristics of caved ore and rock. Based on the discrete element software PFC3D and rigid block model, the numerical draw model was constructed for the first time. The reliability and superiority of the rigid block model in the study of flow characteristics of caved ore and rock were proved by comparative analysis between near-field physical draw test results and simulated results. Moreover, the variation law of the IMZ (Isolated Movement Zone), the stress evolution law and its mechanical mechanism in the particle flow system under far-field conditions were quantitatively studied. The key research results prove that: 1) The shapes of IMZ under near/far-field conditions conform to the upside-down drop shape theory. In the initial draw stage, the maximum width of IMZ increases rapidly with the increase of height in the form of power function; while in the following draw stage, the maximum width of IMZ increases almost linearly with the height increase. 2) There is an obvious stress arch effect during the flow of caved ore and rock. With the range expansion of the caved ore and rock, the vertical stress in a certain range outside the IMZ decreases obviously, while the horizontal stress gradually increases and surges before the arrival of IMZ. Furthermore, the horizontal and vertical stresses within the IMZ drop sharply to a lower level.
  • [1]
    沈南山, 顾晓春, 尹升华. 国内外自然崩落采矿法技术现状. 采矿技术, 2009, 9(4):1 doi: 10.3969/j.issn.1671-2900.2009.04.001

    Shen N S, Gu X C, Yin S H. Technology status of block caving method at home and abroad. Min Technol, 2009, 9(4): 1 doi: 10.3969/j.issn.1671-2900.2009.04.001
    [2]
    Chitombo G P. Cave mining: 16 years after Laubscher’s 1994 paper 'Cave mining−state of the art'. Min Technol, 2010, 119(3): 132 doi: 10.1179/174328610X12820409992255
    [3]
    Pierce M E. A Model for Gravity Flow of Fragmented Rock in Block Caving Mines[Dissertation]. Brisbane: The University of Queensland, 2010
    [4]
    王汉昌. 放矿学. 北京: 冶金工业出版社, 1982

    Wang H C. Ore Drawing. Beijing: Metallurgical Industry Press, 1982
    [5]
    李荣福, 郭进平. 类椭球体放矿理论及放矿理论检验. 北京: 冶金工业出版社, 2016

    Li R F, Guo J P. Quasi-ellipsoid Drawing Theory and Verification of Drawing. Beijing: Metallurgical Industry Press, 2016
    [6]
    任凤玉. 随机介质放矿理论及其应用. 北京: 冶金工业出版社, 1994

    Ren F Y. Stochastic Medium Theory for Ore Drawing and Its Application. Beijing: Metallurgical Industry Press, 1994
    [7]
    Fröström J. Examination of Equivalent Model Materials for Development and Design of Sublevel Caving[Dissertation]. Stockholm: Royal Institute of Technology, 1970
    [8]
    Jin A B, Sun H, Wu S C, et al. Confirmation of the upside-down drop shape theory in gravity flow and development of a new empirical equation to calculate the shape. Int J Rock Mech Min Sci, 2017, 92: 91 doi: 10.1016/j.ijrmms.2016.12.005
    [9]
    Čssr R K. Gravity flow of granular materials in hoppers and bins. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(1): 25 doi: 10.1016/0148-9062(65)90020-3
    [10]
    Čssr R K. Gravity flow of granular materials in hoppers and bins in mines—Ⅱ. Coarse material. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(3): 277 doi: 10.1016/0148-9062(65)90029-X
    [11]
    Janelid I, Kvapli R. Sublevel caving. Int J Rock Mech Min Sci Geomech Abs, 1966, 3(2): 129 doi: 10.1016/0148-9062(66)90004-0
    [12]
    Laubscher D H. Block Cave Manual, Design Topic: Drawpoint Spacing and Draw Control[Dissertation]. Brisbane: The University of Queensland, 2000
    [13]
    Power G R. Modelling Granular Flow in Caving Mines: Large Scale Physical Modelling and Full Scale Experiments [Dissertation]. Brisbane: The University of Queensland, 2004
    [14]
    Castro R, Trueman R, Halim A. A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int J Rock Mech Min Sci, 2007, 44(6): 860 doi: 10.1016/j.ijrmms.2007.01.001
    [15]
    陶干强, 杨仕教, 任凤玉. 崩落矿岩散粒体流动性能试验研究. 岩土力学, 2009, 30(10):2950 doi: 10.3969/j.issn.1000-7598.2009.10.010

    Tao G Q, Yang S J, Feng Y F. Experimental research on granular flow characters of caved ore and rock. Rock Soil Mech, 2009, 30(10): 2950 doi: 10.3969/j.issn.1000-7598.2009.10.010
    [16]
    王洪江, 尹升华, 吴爱祥, 等. 崩落矿岩流动特性及影响因素实验研究. 中国矿业大学学报, 2010, 39(5):693

    Wang H J, Ying S H, Wu A X, et al. Experimental study of the factors affecting the ore flow mechanism during block caving. J China Univ Min Technol, 2010, 39(5): 693
    [17]
    王云鹏, 余健. 无底柱分段崩落法崩矿步距的优化. 中南大学学报(自然科学版), 2014, 45(2):603

    Wang Y P, Yu J. Optimization of breaking interval in non-pillar sublevel caving mining. J Cent South Univ Sci Technol, 2014, 45(2): 603
    [18]
    邵安林. 端部放矿废石移动规律试验研究. 矿冶工程, 2012, 32(3):1 doi: 10.3969/j.issn.0253-6099.2012.03.001

    Sao A L. Experimental research on mullock movement in the side drawing. Min Metall Eng, 2012, 32(3): 1 doi: 10.3969/j.issn.0253-6099.2012.03.001
    [19]
    徐帅, 安龙, 李元辉, 等. 无底柱分段崩落法多端壁倾角下崩矿步距优化. 东北大学学报(自然科学版), 2012, 33(1):120

    Xu S, An L, Li Y H, et al. Optimization of caving space for different angles of end-wall during pillarless sublevel caving. J Northeast Univ Nat Sci, 2012, 33(1): 120
    [20]
    Castro R, Pineda M. The role of gravity flow in the design and planning of large sublevel stopes. J South Afr Inst Min Metall, 2015, 115(2): 113 doi: 10.17159/2411-9717/2015/v115n2a4
    [21]
    孙浩, 金爱兵, 高永涛, 等. 期望体理论的实验研究及端部放矿崩矿步距优化. 工程科学学报, 2016, 38(9):1197

    Sun H, Jin A B, Gao Y T, et al. Experimental research on the expectation body theory and optimization of the rate of advance during ore breaking in side drawing. Chin J Eng, 2016, 38(9): 1197
    [22]
    Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47 doi: 10.1680/geot.1979.29.1.47
    [23]
    朱焕春. PFC及其在矿山崩落开采研究中的应用. 岩石力学与工程学报, 2006, 25(9):1927 doi: 10.3321/j.issn:1000-6915.2006.09.030

    Zhu H C. PFC and application case of caving study. Chin J Rock Mech Eng, 2006, 25(9): 1927 doi: 10.3321/j.issn:1000-6915.2006.09.030
    [24]
    Hashim M H M. Particle Percolation in Block Caving Mines[Dissertation]. Sydney: The University of New South Wales, 2011
    [25]
    Song Z Y, Wei W J, Zhang J W. Numerical investigation of effect of particle shape on isolated extracted zone (IEZ) in block caving. Arab J Geosci, 2018, 11(12): 310 doi: 10.1007/s12517-018-3669-1
    [26]
    胡建华, 郭福钟, 罗先伟, 等. 缓倾斜中厚矿体崩落开采矿石流动规律仿真与放矿参数优化. 中南大学学报(自然科学版), 2015, 46(5):1772 doi: 10.11817/j.issn.1672-7207.2015.05.027

    Hu J H, Guo F Z, Luo X W, et al. Simulation of ore flow behavior and optimization of discharge parameters for caving method in gently inclined medium thickness ore-body. J Cent South Univ Sci Technol, 2015, 46(5): 1772 doi: 10.11817/j.issn.1672-7207.2015.05.027
    [27]
    孙浩, 金爱兵, 高永涛, 等. 崩落法采矿中放出体流动特性的影响因素. 工程科学学报, 2015, 37(9):1111

    Sun H, Jin A B, Gao Y T, et al. Influencing factors on the flow characteristics of an isolated extraction zone in caving mining. Chin J Eng, 2015, 37(9): 1111
    [28]
    孙浩, 金爱兵, 高永涛, 等. 复杂边界条件下崩落矿岩流动特性. 中南大学学报(自然科学版), 2015, 46(10):3782 doi: 10.11817/j.issn.1672-7207.2015.10.031

    Sun H, Jin A B, Gao Y T, et al. Flow characteristics of caved ore and rock under complex boundary conditions. J Cent South Univ Sci Technol, 2015, 46(10): 3782 doi: 10.11817/j.issn.1672-7207.2015.10.031
    [29]
    孙浩, 金爱兵, 高永涛, 等. 不同端壁倾角条件下放出体形态研究及最优崩矿步距的确定. 工程科学学报, 2016, 38(2):159

    Sun H, Jin A B, Gao Y T, et al. Research of the isolated extraction zone form and determination of optimal independent advance under different end wall angles. Chin J Eng, 2016, 38(2): 159
    [30]
    Castro R, Gómez R, Pineda M, et al. Experimental quantification of vertical stresses during gravity flow in block caving. Int J Rock Mech Min Sci, 2020, 127: 104237 doi: 10.1016/j.ijrmms.2020.104237
    [31]
    Rafiee R, Ataei M, Khalookakaie R, et al. Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. Int J Rock Mech Min Sci, 2018, 105: 22 doi: 10.1016/j.ijrmms.2018.03.001
    [32]
    Itasca Consulting Group Inc. PFC 6.0 documentation[EB/OL]. Itasca Consulting Group Inc (2019)[2020-07-11]. http://docs.itascacg.com/pfc600/pfc/docproject/index.html
    [33]
    Sun H, Jin A B, Elmo D, et al. A numerical based approach to calculate ore dilution rates using rolling resistance model and upside-down drop shape theory. Rock Mech Rock Eng, 2020, 53(10): 4639 doi: 10.1007/s00603-020-02180-6
    [34]
    孙浩. 基于颗粒元理论的崩落矿岩运移演化机理研究[学位论文]. 北京: 北京科技大学, 2019

    Sun H. Study on Migration and Evolution Mechanism of Caved Ore and Rock Based on the Particle Flow Theory[Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [35]
    Castro R L. Study of the Mechanisms of Gravity Flow for Block Caving[Dissertation]. Brisbane: University of Queensland, 2007
    [36]
    Arévalo R, Maza D, Pugnaloni L A. Identification of arches in two-dimensional granular packings. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(2): 021303 doi: 10.1103/PhysRevE.74.021303

Catalog

    Article Metrics

    Article views (2562) PDF downloads (70) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return