Citation: | SUN Hao, CHEN Shuai-jun, GAO Yan-hua, JIN Ai-bing, QIN Xuan, JU You, YIN Ze-song, LI Mu-ya, ZHAO Zeng-shan. Research on near/far-field flow characteristics of caved ore and rock based on rigid block model[J]. Chinese Journal of Engineering, 2021, 43(2): 205-214. DOI: 10.13374/j.issn2095-9389.2020.10.23.003 |
[1] |
沈南山, 顾晓春, 尹升华. 国内外自然崩落采矿法技术现状. 采矿技术, 2009, 9(4):1 doi: 10.3969/j.issn.1671-2900.2009.04.001
Shen N S, Gu X C, Yin S H. Technology status of block caving method at home and abroad. Min Technol, 2009, 9(4): 1 doi: 10.3969/j.issn.1671-2900.2009.04.001
|
[2] |
Chitombo G P. Cave mining: 16 years after Laubscher’s 1994 paper 'Cave mining−state of the art'. Min Technol, 2010, 119(3): 132 doi: 10.1179/174328610X12820409992255
|
[3] |
Pierce M E. A Model for Gravity Flow of Fragmented Rock in Block Caving Mines[Dissertation]. Brisbane: The University of Queensland, 2010
|
[4] |
王汉昌. 放矿学. 北京: 冶金工业出版社, 1982
Wang H C. Ore Drawing. Beijing: Metallurgical Industry Press, 1982
|
[5] |
李荣福, 郭进平. 类椭球体放矿理论及放矿理论检验. 北京: 冶金工业出版社, 2016
Li R F, Guo J P. Quasi-ellipsoid Drawing Theory and Verification of Drawing. Beijing: Metallurgical Industry Press, 2016
|
[6] |
任凤玉. 随机介质放矿理论及其应用. 北京: 冶金工业出版社, 1994
Ren F Y. Stochastic Medium Theory for Ore Drawing and Its Application. Beijing: Metallurgical Industry Press, 1994
|
[7] |
Fröström J. Examination of Equivalent Model Materials for Development and Design of Sublevel Caving[Dissertation]. Stockholm: Royal Institute of Technology, 1970
|
[8] |
Jin A B, Sun H, Wu S C, et al. Confirmation of the upside-down drop shape theory in gravity flow and development of a new empirical equation to calculate the shape. Int J Rock Mech Min Sci, 2017, 92: 91 doi: 10.1016/j.ijrmms.2016.12.005
|
[9] |
Čssr R K. Gravity flow of granular materials in hoppers and bins. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(1): 25 doi: 10.1016/0148-9062(65)90020-3
|
[10] |
Čssr R K. Gravity flow of granular materials in hoppers and bins in mines—Ⅱ. Coarse material. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(3): 277 doi: 10.1016/0148-9062(65)90029-X
|
[11] |
Janelid I, Kvapli R. Sublevel caving. Int J Rock Mech Min Sci Geomech Abs, 1966, 3(2): 129 doi: 10.1016/0148-9062(66)90004-0
|
[12] |
Laubscher D H. Block Cave Manual, Design Topic: Drawpoint Spacing and Draw Control[Dissertation]. Brisbane: The University of Queensland, 2000
|
[13] |
Power G R. Modelling Granular Flow in Caving Mines: Large Scale Physical Modelling and Full Scale Experiments [Dissertation]. Brisbane: The University of Queensland, 2004
|
[14] |
Castro R, Trueman R, Halim A. A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int J Rock Mech Min Sci, 2007, 44(6): 860 doi: 10.1016/j.ijrmms.2007.01.001
|
[15] |
陶干强, 杨仕教, 任凤玉. 崩落矿岩散粒体流动性能试验研究. 岩土力学, 2009, 30(10):2950 doi: 10.3969/j.issn.1000-7598.2009.10.010
Tao G Q, Yang S J, Feng Y F. Experimental research on granular flow characters of caved ore and rock. Rock Soil Mech, 2009, 30(10): 2950 doi: 10.3969/j.issn.1000-7598.2009.10.010
|
[16] |
王洪江, 尹升华, 吴爱祥, 等. 崩落矿岩流动特性及影响因素实验研究. 中国矿业大学学报, 2010, 39(5):693
Wang H J, Ying S H, Wu A X, et al. Experimental study of the factors affecting the ore flow mechanism during block caving. J China Univ Min Technol, 2010, 39(5): 693
|
[17] |
王云鹏, 余健. 无底柱分段崩落法崩矿步距的优化. 中南大学学报(自然科学版), 2014, 45(2):603
Wang Y P, Yu J. Optimization of breaking interval in non-pillar sublevel caving mining. J Cent South Univ Sci Technol, 2014, 45(2): 603
|
[18] |
邵安林. 端部放矿废石移动规律试验研究. 矿冶工程, 2012, 32(3):1 doi: 10.3969/j.issn.0253-6099.2012.03.001
Sao A L. Experimental research on mullock movement in the side drawing. Min Metall Eng, 2012, 32(3): 1 doi: 10.3969/j.issn.0253-6099.2012.03.001
|
[19] |
徐帅, 安龙, 李元辉, 等. 无底柱分段崩落法多端壁倾角下崩矿步距优化. 东北大学学报(自然科学版), 2012, 33(1):120
Xu S, An L, Li Y H, et al. Optimization of caving space for different angles of end-wall during pillarless sublevel caving. J Northeast Univ Nat Sci, 2012, 33(1): 120
|
[20] |
Castro R, Pineda M. The role of gravity flow in the design and planning of large sublevel stopes. J South Afr Inst Min Metall, 2015, 115(2): 113 doi: 10.17159/2411-9717/2015/v115n2a4
|
[21] |
孙浩, 金爱兵, 高永涛, 等. 期望体理论的实验研究及端部放矿崩矿步距优化. 工程科学学报, 2016, 38(9):1197
Sun H, Jin A B, Gao Y T, et al. Experimental research on the expectation body theory and optimization of the rate of advance during ore breaking in side drawing. Chin J Eng, 2016, 38(9): 1197
|
[22] |
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47 doi: 10.1680/geot.1979.29.1.47
|
[23] |
朱焕春. PFC及其在矿山崩落开采研究中的应用. 岩石力学与工程学报, 2006, 25(9):1927 doi: 10.3321/j.issn:1000-6915.2006.09.030
Zhu H C. PFC and application case of caving study. Chin J Rock Mech Eng, 2006, 25(9): 1927 doi: 10.3321/j.issn:1000-6915.2006.09.030
|
[24] |
Hashim M H M. Particle Percolation in Block Caving Mines[Dissertation]. Sydney: The University of New South Wales, 2011
|
[25] |
Song Z Y, Wei W J, Zhang J W. Numerical investigation of effect of particle shape on isolated extracted zone (IEZ) in block caving. Arab J Geosci, 2018, 11(12): 310 doi: 10.1007/s12517-018-3669-1
|
[26] |
胡建华, 郭福钟, 罗先伟, 等. 缓倾斜中厚矿体崩落开采矿石流动规律仿真与放矿参数优化. 中南大学学报(自然科学版), 2015, 46(5):1772 doi: 10.11817/j.issn.1672-7207.2015.05.027
Hu J H, Guo F Z, Luo X W, et al. Simulation of ore flow behavior and optimization of discharge parameters for caving method in gently inclined medium thickness ore-body. J Cent South Univ Sci Technol, 2015, 46(5): 1772 doi: 10.11817/j.issn.1672-7207.2015.05.027
|
[27] |
孙浩, 金爱兵, 高永涛, 等. 崩落法采矿中放出体流动特性的影响因素. 工程科学学报, 2015, 37(9):1111
Sun H, Jin A B, Gao Y T, et al. Influencing factors on the flow characteristics of an isolated extraction zone in caving mining. Chin J Eng, 2015, 37(9): 1111
|
[28] |
孙浩, 金爱兵, 高永涛, 等. 复杂边界条件下崩落矿岩流动特性. 中南大学学报(自然科学版), 2015, 46(10):3782 doi: 10.11817/j.issn.1672-7207.2015.10.031
Sun H, Jin A B, Gao Y T, et al. Flow characteristics of caved ore and rock under complex boundary conditions. J Cent South Univ Sci Technol, 2015, 46(10): 3782 doi: 10.11817/j.issn.1672-7207.2015.10.031
|
[29] |
孙浩, 金爱兵, 高永涛, 等. 不同端壁倾角条件下放出体形态研究及最优崩矿步距的确定. 工程科学学报, 2016, 38(2):159
Sun H, Jin A B, Gao Y T, et al. Research of the isolated extraction zone form and determination of optimal independent advance under different end wall angles. Chin J Eng, 2016, 38(2): 159
|
[30] |
Castro R, Gómez R, Pineda M, et al. Experimental quantification of vertical stresses during gravity flow in block caving. Int J Rock Mech Min Sci, 2020, 127: 104237 doi: 10.1016/j.ijrmms.2020.104237
|
[31] |
Rafiee R, Ataei M, Khalookakaie R, et al. Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. Int J Rock Mech Min Sci, 2018, 105: 22 doi: 10.1016/j.ijrmms.2018.03.001
|
[32] |
Itasca Consulting Group Inc. PFC 6.0 documentation[EB/OL]. Itasca Consulting Group Inc (2019)[2020-07-11]. http://docs.itascacg.com/pfc600/pfc/docproject/index.html
|
[33] |
Sun H, Jin A B, Elmo D, et al. A numerical based approach to calculate ore dilution rates using rolling resistance model and upside-down drop shape theory. Rock Mech Rock Eng, 2020, 53(10): 4639 doi: 10.1007/s00603-020-02180-6
|
[34] |
孙浩. 基于颗粒元理论的崩落矿岩运移演化机理研究[学位论文]. 北京: 北京科技大学, 2019
Sun H. Study on Migration and Evolution Mechanism of Caved Ore and Rock Based on the Particle Flow Theory[Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[35] |
Castro R L. Study of the Mechanisms of Gravity Flow for Block Caving[Dissertation]. Brisbane: University of Queensland, 2007
|
[36] |
Arévalo R, Maza D, Pugnaloni L A. Identification of arches in two-dimensional granular packings. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(2): 021303 doi: 10.1103/PhysRevE.74.021303
|