Processing math: 100%
LI Zi-liang, XU Zhi-feng, ZHANG Xi, ZAN Miao-miao, LIU Zhi-lou. Mercury recovery from acidic mercury solution using electrodeposition[J]. Chinese Journal of Engineering, 2020, 42(8): 999-1006. DOI: 10.13374/j.issn2095-9389.2020.03.15.001
Citation: LI Zi-liang, XU Zhi-feng, ZHANG Xi, ZAN Miao-miao, LIU Zhi-lou. Mercury recovery from acidic mercury solution using electrodeposition[J]. Chinese Journal of Engineering, 2020, 42(8): 999-1006. DOI: 10.13374/j.issn2095-9389.2020.03.15.001

Mercury recovery from acidic mercury solution using electrodeposition

More Information
  • Corresponding author:

    LIU Zhi-lou, E-mail: lzl8786489@163.com

  • Received Date: March 14, 2020
  • Available Online: April 08, 2020
  • Published Date: September 10, 2020
  • Mercury, a heavy metal, can seriously harm human bodies and the environment due to its characteristics of high toxicity, biological enrichment, and long-range migration. The non-ferrous metal smelting industry is one of the main sources of atmospheric mercury pollution in China. Therefore, controlling atmospheric mercury emissions from non-ferrous smelting plants is very important. The wet cleaning process has been widely applied in the purification of smelting flue gas because of its advantages such as a high removal efficiency, stable operation, and low cost. During the wet purification process, thiourea is usually added because it can reduce the oxidation potential of mercury and react with mercury to form stable coordination ions, resulting in the high-efficiency removal of mercury from high-sulfur smelting flue gas. However, mercury recovery from scrubbing solutions containing mercury and thiourea obtained from the wet cleaning process is difficult. In this study, a novel technology to recover mercury from the thiourea mercury solution via electrodeposition was proposed and investigated. The linear potential scanning method was applied to obtain the reduction potential of mercury. It was determined that the optimal potential of the mercury electrodeposition process should be controlled between −0.55 V and −0.45 V because the presence of ferric ions, copper ions, and sulfite ions did not seriously affect the electrodeposition of mercury. Controlled potential electrolysis was employed to efficiently recover mercury from thiourea mercury solution, and the effects of key parameters, including electrolyte type and concentration, electrolyte temperature, stirring rate, and electrolytic time, on the mercury recovery efficiency were explored. The optimal process conditions are as follows: a cathode material of copper sheet, electrolyte of 0.24 mol·L−1 Na2SO4, electrolyte temperature of 30–40 ℃, stirring speed of 100–300 r·min−1, SO23 concentration of 8 mmol·L−1, and electrolytic time of 5 h. Under the optimal process conditions, the mercury recovery efficiency mercury is over 98%. The electrolytic products on the cathode are elemental mercury, and the corresponding purity is over 99%.
  • [1]
    卢光华, 岳昌盛, 彭犇, 等. 汞污染土壤修复技术的研究进展. 工程科学学报, 2017, 39(1):1

    Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil. <italic>Chin J Eng</italic>, 2017, 39(1): 1
    [2]
    刘开宇, 李元高, 唐有根, 等. 聚乙烯醇-丁基罗丹明B分光光度法测定电池及废水中的痕量汞(II). 江西有色金属, 2001, 15(1):37 doi: 10.3969/j.issn.1674-9669.2001.01.012

    Liu K Y, Li Y G, Tang Y G, et al. Spectrophotometric determination of trace Hg (II) in battery and waste water by polyvinyl alcohol-butyl rhodamine B. <italic>Jiangxi Nonferrous Met</italic>, 2001, 15(1): 37 doi: 10.3969/j.issn.1674-9669.2001.01.012
    [3]
    Liu Z L, Li Z L, Xie X F, et al. Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range. <italic>Environ Sci Technol</italic>, 2020, 54(1): 604
    [4]
    师艳丽, 陈明, 李凤果, 等. 土壤重金属污染修复技术研究进展. 有色金属科学与工程, 2018, 9(5):66

    Shi Y L, Chen M, Li F G, et al. Advances in remediation techniques for soil heavy metal pollution. <italic>Nonferrous Met Sci Eng</italic>, 2018, 9(5): 66
    [5]
    闫利刚, 李季, 孙尧, 等. 高浓度含汞盐泥的稳定化技术工程应用试验研究. 江西理工大学学报, 2017, 38(1):61

    Yan L G, Li J, Sun Y, et al. Application research on stabilization for remediation of salty mud with high mercury concentration. <italic>J Jiangxi Univ Sci Technol</italic>, 2017, 38(1): 61
    [6]
    刘友存, 刘正芳, 刘基, 等. 赣江上游龙迳河水体氨氮与重金属污染分布特征及风险评价. 有色金属科学与工程, 2019, 10(4):85

    Liu Y C, Liu Z F, Liu J, et al. Distribution characteristics and risk assessment of ammonia nitrogen and heavy metal pollution in Longjing river, the upstream of Ganjiang river. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(4): 85
    [7]
    胡鹏搏, 翁麒宇, 李端乐, 等. 模拟烟气中气态痕量元素污染物发生方法的研究现状. 工程科学学报, https:doi: 10.13374/j.issn2095-9389.2020.03.05.006

    Hu P B, Weng L Y, Li D L, et al. Research status for generation methods of gaseous trace element pollutants in simulated flue gas. Chin J Eng, https://doi: 10.13374/j.issn2095-9389.2020.03.05.006
    [8]
    Liu Z L, Wang D L, Yang S, et al. Selective recovery of mercury from high mercury-containing smelting wastes using an iodide solution system. <italic>J Hazard Mater</italic>, 2019, 363: 179 doi: 10.1016/j.jhazmat.2018.09.001
    [9]
    Yang S, Wang D L, Liu H, et al. Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: Copper polysulfide modification. <italic>Chem Eng J</italic>, 2019, 358: 1235 doi: 10.1016/j.cej.2018.10.134
    [10]
    Liu H, Xie X F, Chen H, et al. SO<sub>2</sub> promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. <italic>Fuel</italic>, 2020, 261: 116367 doi: 10.1016/j.fuel.2019.116367
    [11]
    Yang S, Liu Z L, Yan X, et al. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO<sub>2</sub> catalyst. <italic>Energy Fuels</italic>, 2019, 33(11): 11380 doi: 10.1021/acs.energyfuels.9b02376
    [12]
    李子良, 徐志峰, 张溪, 等. 有色金属冶炼烟气中单质汞脱除研究现状. 有色金属科学与工程, 2020, 11(2):20

    Li Z L, Xu Z F, Zhang X, et al. Research status of elemental mercury removal from flue gas in non-ferrous metals production. <italic>Nonferrous Met Sci Eng</italic>, 2020, 11(2): 20
    [13]
    闫伯骏, 邢奕, 路培, 等. 钢铁行业烧结烟气多污染物协同净化技术研究进展. 工程科学学报, 2018, 40(7):767

    Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. <italic>Chin J Eng</italic>, 2018, 40(7): 767
    [14]
    Liu Z L, Peng B, Chai L Y, et al. Selective removal of elemental mercury from high-concentration SO<sub>2</sub> flue gas by thiourea solution and investigation of mechanism. <italic>Ind Eng Chem Res</italic>, 2017, 56(15): 4281 doi: 10.1021/acs.iecr.7b00044
    [15]
    邱廷省, 唐海峰. 生物吸附法处理重金属废水的研究现状及发展. 南方冶金学院学报, 2003, 24(4):65 doi: 10.3969/j.issn.2095-3046.2003.04.016

    Qiu T S, Tang H F. Present situation and development of biosorption treatment for wastewater containing heavy metals. <italic>J Southern Inst Metall</italic>, 2003, 24(4): 65 doi: 10.3969/j.issn.2095-3046.2003.04.016
    [16]
    陶美霞, 陈明, 杨泉, 等. GIS在土壤重金属污染评价和安全预警的应用. 有色金属科学与工程, 2017, 8(6):92

    Tao M X, Chen M, Yang Q, et al. Assessment in soil heavy metal pollution and safety pre-warning based on GIS. <italic>Nonferrous Met Sci Eng</italic>, 2017, 8(6): 92
    [17]
    钟斌, 曾清全. 硫化沉淀法回收镍镁液中的镍. 有色金属科学与工程, 2015, 6(2):53

    Zhong B, Zeng Q Q. Recovering nickel from nickel-magnesium solution by sulfuration deposition method. <italic>Nonferrous Met Sci Eng</italic>, 2015, 6(2): 53
    [18]
    李宝磊, 邵春岩, 陈刚, 等. 我国含汞废水处置技术现状剖析与对策. 水处理技术, 2018, 44(11):1

    Li B L, Shao C Y, Chen G, et al. Status analysis and countermeasures of mercury containing wastewater treatment in China. <italic>Technol Water Treat</italic>, 2018, 44(11): 1
    [19]
    黎邹江, 李栋, 许志鹏, 等. 旋流电积在有色冶金中的应用. 有色金属科学与程, 2019, 10(5):1

    Li Z J, Li D, Xu Z P, et al. Application of cyclone electrowinning in non-ferrous metallurgy. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(5): 1
    [20]
    张小军, 黄惠, 董劲, 等. 锌电积过程中锰元素对铝阴极的电化学行为影响. 工程科学学报, 2018, 40(7):800

    Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. <italic>Chin J Eng</italic>, 2018, 40(7): 800
    [21]
    何云龙, 徐瑞东, 何世伟, 等. 高铋铅阳极泥碱性氧化浸出渣熔炼-电解提铋研究. 有色金属科学与工程, 2019, 10(1):41

    He Y L, Xu R D, He S W, et al. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(1): 41
    [22]
    杨建广, 李树超, 李陵晨, 等. 废铜包铁针NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>体系隔膜电解回收铜. 中国有色金属学报, 2019, 29(8):1721 doi: 10.1016/S1003-6326(19)65079-X

    Yang J G, Li S C, Li L C, et al. Copper recovery from scrap copper coated iron needle via membrane electrolysis in NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub> system. <italic>Chin J Nonferrous Met</italic>, 2019, 29(8): 1721 doi: 10.1016/S1003-6326(19)65079-X
    [23]
    刘艳艳. 电解−电渗析联合工艺实现含铜废水资源化研究[学位论文]. 青岛: 中国海洋大学, 2009

    Liu Y Y. Resources Recovery by the Combined Technology of Electrolysis and Electrodialysis from Copper Wastewater [Dissertation]. Qingdao: Ocean University of China, 2009.
    [24]
    Lai Y C, Lee W J, Huang K L, et al. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process. <italic>J Hazard Mater</italic>, 2008, 154(1-3): 588 doi: 10.1016/j.jhazmat.2007.10.061
    [25]
    许波. 玻利登-诺津克除汞技术及应用. 有色冶炼, 2000, 29(6):10

    Xu B. Boliden-Nojenk mercury-removal technology and its application. <italic>Nonferrous Smelting</italic>, 2000, 29(6): 10
    [26]
    唐冠华. 碘络合—电解法除汞在硫酸生产中的应用. 有色冶金设计与研究, 2010, 31(3):23 doi: 10.3969/j.issn.1004-4345.2010.03.007

    Tang G H. Application of iodine complex-electrolytic method of removing mercury in sulfuric acid production. <italic>Nonferrous Met Eng Res</italic>, 2010, 31(3): 23 doi: 10.3969/j.issn.1004-4345.2010.03.007
    [27]
    侯鸿斌. 韶关冶炼厂汞回收工艺及生产现状分析. 湖南有色金属, 2001, 17(5):18 doi: 10.3969/j.issn.1003-5540.2001.05.008

    Hou H B. Mercury recovery process and analysis of mercury production status at Shaoguan smelter. <italic>Hunan Nonferrous Met</italic>, 2001, 17(5): 18 doi: 10.3969/j.issn.1003-5540.2001.05.008
    [28]
    Fornés J P, Bisang J M. Cathode depassivation using ultrasound for the production of colloidal sulphur by reduction of sulphur dioxide. <italic>Electrochim Acta</italic>, 2016, 213: 186 doi: 10.1016/j.electacta.2016.07.093
  • Cited by

    Periodical cited type(5)

    1. 阮泽晟,王齐涛,韩先翔,陈志康,张志恒,王瑞祥,张忠堂,徐志峰,刘志楼. 锌冶炼副产物制备硫化锌吸附剂脱除气态汞的研究. 工程科学学报. 2024(01): 33-43 . 本站查看
    2. 刘志楼,陈志康,孙辅泽,张志恒,严康,衷水平,刘恢,王瑞祥,李家元,徐志峰. 再生铜烟灰中卤素的分离和重金属的回收(英文). Transactions of Nonferrous Metals Society of China. 2024(08): 2686-2701 .
    3. 杨旭,历新宇,周娟苹,姜男哲. 含重金属离子废水处理技术研究进展. 材料导报. 2023(09): 60-69 .
    4. 刘嘉豪,马红钦,谷星朋. 酸洗-电沉积联用技术回收垃圾焚烧飞灰中的重金属. 环境工程学报. 2023(05): 1580-1588 .
    5. 张志恒,陈志康,涂玉鑫,陈佳煌,孙辅泽,刘志楼,王瑞祥,徐志峰. 富硫相硫化铜对冶炼烟气中单质汞的选择性捕获. 中国有色金属学报. 2023(08): 2691-2706 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2022) PDF downloads (69) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return