Citation: | GUO Zhi-cheng, XIN Qing, ZANG Yue, LIN Jun. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel[J]. Chinese Journal of Engineering, 2021, 43(2): 239-247. DOI: 10.13374/j.issn2095-9389.2020.01.07.001 |
[1] |
Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044
|
[2] |
Liu N, Zhang S T, Fu R W, et al. Carbon aerogel spheres prepared via alcohol supercritical drying. Carbon, 2006, 44(12): 2430 doi: 10.1016/j.carbon.2006.04.032
|
[3] |
Xie T P, Zhang L, Wang Y, et al. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram Int, 2019, 45(2): 2516 doi: 10.1016/j.ceramint.2018.10.181
|
[4] |
Chandrasekaran S, Campbell P G, Baumann T F, et al. Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J Mater Res, 2017, 32(22): 4166 doi: 10.1557/jmr.2017.411
|
[5] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
|
[6] |
刘盼盼, 刘斯奇, 高鸿毅, 等. 羟基磷灰石气凝胶复合相变材料的制备及其性能. 工程科学学报, 2020, 42(1):120
Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120
|
[7] |
Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2018, 165(4): H3001 doi: 10.1149/2.0011804jes
|
[8] |
水丽, 张凯, 于宏. 石墨烯含量对石墨烯/Al–15Si–4Cu–Mg复合材料微观组织和力学性能的影响. 工程科学学报, 2019, 41(9):1162
Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al–15Si–4Cu–Mg matrix composites. Chin J Eng, 2019, 41(9): 1162
|
[9] |
Méndez-Morales T, Ganfoud N, Li Z J, et al. Performance of microporous carbon electrodes for supercapacitors: comparing graphene with disordered materials. Energy Storage Mater, 2019, 17: 88 doi: 10.1016/j.ensm.2018.11.022
|
[10] |
付蓉蓉, 罗民, 马永华, 等. Ni3(HCOO)6/还原氧化石墨烯复合电极材料的制备及电容性能. 高等学校化学学报, 2016, 37(8):1485 doi: 10.7503/cjcu20160234
Fu R R, Luo M, Ma Y H, et al. Preparation and supercapacitance of Ni3(HCOO)6/reduced graphene oxide electrode materials. Chem J Chin Univ, 2016, 37(8): 1485 doi: 10.7503/cjcu20160234
|
[11] |
Zou Z H, Zhou W J, Zhang Y H, et al. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem Eng J, 2019, 357: 45 doi: 10.1016/j.cej.2018.09.143
|
[12] |
Wu X F, Zhang J, Zhuang Y F, et al. Template-free preparation of a few-layer graphene nanomesh via a one-step hydrothermal process. J Mater Sci, 2015, 50(3): 1317 doi: 10.1007/s10853-014-8691-4
|
[13] |
Zhang J J, Zhao X L, Li M X, et al. High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release. Nanoscale, 2018, 10(37): 17638 doi: 10.1039/C8NR04557G
|
[14] |
高鑫. 石墨烯基超级电容器电极材料的制备及电化学性能[学位论文]. 哈尔滨: 哈尔滨理工大学, 2019
Gao X. Fabrication and Electrochemical Properties of the Graphene Based Composites as Supercapacitor Electrode Materials [Dissertation]. Harbin: Harbin University of Science and Technology, 2019
|
[15] |
Xu X, Zhang Q Q, Yu Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater, 2016, 28(41): 9223 doi: 10.1002/adma.201603079
|
[16] |
González M, Baselga J, Pozuelo J. Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon, 2019, 147: 27 doi: 10.1016/j.carbon.2019.02.068
|
[17] |
Xue Q, Ding Y, Xue Y Y, et al. 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon, 2018, 139: 137 doi: 10.1016/j.carbon.2018.06.052
|
[18] |
Chu H, Zhang F F, Pei L Y, et al. Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J Alloys Compd, 2018, 767: 583 doi: 10.1016/j.jallcom.2018.07.126
|
[19] |
Ates M, Caliskan S, Ozten E. Preparation of rGO/Ag/PEDOT nanocomposites for supercapacitors. Mater Technol, 2018, 33(14): 872 doi: 10.1080/10667857.2018.1521087
|
[20] |
Yang Y, Xi Y L, Li J Z, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett, 2017, 12: 394 doi: 10.1186/s11671-017-2159-9
|
[21] |
Liu L, Tian G Y, Ma R, et al. Preparation and electrosorption performance of graphene Xerogel. ECS Solid State Lett, 2015, 4(6): M9 doi: 10.1149/2.0011506ssl
|
[22] |
Nagy B, Bakos I, Bertoti I, et al. Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - Formaldehyde based carbon aerogels. Carbon, 2018, 139: 872 doi: 10.1016/j.carbon.2018.07.061
|
[23] |
Rey-Raap N, Arenillas A, Menendez J A. A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2016, 223: 89 doi: 10.1016/j.micromeso.2015.10.044
|
[24] |
Garcia-Bordeje E, Victor-Roman S, Sanahuja-Parejo O, et al. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale, 2018, 10(7): 3526 doi: 10.1039/C7NR08732B
|
[25] |
Horikaw T, Hayashi J, Muroyama K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon, 2004, 42(8-9): 1625 doi: 10.1016/j.carbon.2004.02.016
|
[26] |
Feng Y N, Wang J, Ge L, et al. Pore size controllable preparation for low density porous nano-carbon. J Nanosci Nanotechnol, 2013, 13(10): 7012 doi: 10.1166/jnn.2013.8063
|
[27] |
Rey-Raap N, Menendez J A, Arenillas A. Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon, 2014, 78: 490 doi: 10.1016/j.carbon.2014.07.030
|
[28] |
Elkhatat A M, Al-Muhtaseb S A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater, 2011, 23(26): 2887 doi: 10.1002/adma.201100283
|
[29] |
Gallegos-Suarez E, Perez-Cadenas A F, Maldonado-Hodar F J, et al. On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem Eng J, 2012, 181-182: 851 doi: 10.1016/j.cej.2011.12.002
|
[30] |
Al-Muhtaseb S A, Ritter J A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater, 2003, 15(2): 101 doi: 10.1002/adma.200390020
|
[31] |
Matos I, Fernandes S, Guerreiro L, et al. The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2006, 92(1-3): 38 doi: 10.1016/j.micromeso.2005.12.011
|
[32] |
Rey-Raap N, Menendez J A, Arenillas A. RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater, 2014, 195: 266 doi: 10.1016/j.micromeso.2014.04.048
|
[33] |
Xia X H, Zhang X F, Yi S Q, et al. Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors. J Solid State Electrochem, 2016, 20(6): 1793 doi: 10.1007/s10008-016-3196-5
|
[34] |
Wu Z S, Ren W C, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 2010, 4(10): 5835 doi: 10.1021/nn101754k
|