Citation: | HUANG Ying-ying, LI Geng-hui, ZHAO Bo, LU Jin-lin, KANG Shu-mei, CHEN Shu-wen. Preparation and energy storage properties of V2O5/MXene nanocomposites[J]. Chinese Journal of Engineering, 2020, 42(8): 1018-1028. DOI: 10.13374/j.issn2095-9389.2019.11.07.002 |
[1] |
Li S, Niu J J, Zhao Y C, et al. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. <italic>Nat Commun</italic>, 2015, 6: 7872 doi: 10.1038/ncomms8872
|
[2] |
Liu Q, Nayfeh O, Nayfeh M H, et al. Flexible supercapacitor sheets based on hybrid nanocomposite materials. <italic>Nano Energy</italic>, 2013, 2(1): 133 doi: 10.1016/j.nanoen.2012.08.007
|
[3] |
Yu J J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. <italic>J Rare Met</italic>, 2018, 42(5): 449
|
[4] |
Wu B, Liao B, Liu X, Wen J K. A study on electrochemical fundamentals and kinetics of bioleaching of chalcocite. <italic>J Rare Met</italic>, 2019, 43(12): 1332
|
[5] |
Wu L, Zhong S K, Lu J J, et al. Synthesis of Cr-doped LiMnPO<sub>4</sub>/C cathode materials by sol-gel combined ball milling method and its electrochemical properties. <italic>Ionics</italic>, 2013, 19(7): 1061 doi: 10.1007/s11581-013-0919-9
|
[6] |
He B, Chen P, Xie Y, et al. 20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion. <italic>Bioorg Med Chem Lett</italic>, 2017, 27(16): 3867 doi: 10.1016/j.bmcl.2017.06.045
|
[7] |
Chen C, Xie X Q, Anasori B, et al. MoS<sub>2</sub>-on-MXene heterostructures as highly reversible anode materials for lithium‐ion batteries. <italic>Angew Chem Int Ed</italic>, 2018, 57(7): 1846 doi: 10.1002/anie.201710616
|
[8] |
Zhang X, Zhang Z H, Zhou Z. MXene-based materials for electrochemical energy storage. <italic>J Energy Chem</italic>, 2018, 27(1): 73 doi: 10.1016/j.jechem.2017.08.004
|
[9] |
Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO<sub>2</sub> asymmetric supercapacitors. <italic>Adv Energy Mater</italic>, 2018, 8(13): 1703043 doi: 10.1002/aenm.201703043
|
[10] |
Yang J, Lan T B, Liu J D, et al. Supercapacitor electrode of hollow spherical V<sub>2</sub>O<sub>5</sub> with a high pseudocapacitance in aqueous solution. <italic>Electrochim Acta</italic>, 2013, 105: 489 doi: 10.1016/j.electacta.2013.05.023
|
[11] |
Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using <italic>in situ</italic> X-ray absorption spectroscopy. <italic>Adv Energy Mater</italic>, 2015, 5(15): 1500589 doi: 10.1002/aenm.201500589
|
[12] |
Lv G X, Wang J, Shi Z Q, et al. Intercalation and delamination of two-dimensional MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub>) and application in sodium-ion batteries. <italic>Mater Lett</italic>, 2018, 219: 45 doi: 10.1016/j.matlet.2018.02.016
|
[13] |
VahidMohammadi A, Kayali E, Orangi J, et al. Techniques for MXene delamination into single-layer flakes // 2D Metal Carbides and Nitrides (MXenes). Cham: Springer, 2019: 177
|
[14] |
Feng W L, Luo H, Wang Y, et al. Ultrasonic assisted etching and delaminating of Ti<sub>3</sub>C<sub>2</sub> Mxene. <italic>Ceram Int</italic>, 2018, 44(6): 7084 doi: 10.1016/j.ceramint.2018.01.147
|
[15] |
Dong Y C, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti<sub>3</sub>C<sub>2</sub> MXene thin films for passive photonic diodes. <italic>Adv Mater</italic>, 2018, 30(10): 1705714 doi: 10.1002/adma.201705714
|
[16] |
Wang H Y, Shao X Z, Wang L, et al. Effect of Ce doping into V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> catalysts on the selective catalytic reduction of NO<sub><italic>x</italic></sub> by NH<sub>3</sub>. <italic>J Rare Met</italic>, 2017, 42(1): 53
|
[17] |
Wang D S, Li F, Lian R Q, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub>2</sub> MXene in lithium–sulfur batteries. <italic>ACS Nano</italic>, 2019, 13(10): 11078 doi: 10.1021/acsnano.9b03412
|
[18] |
Zhu Y, Rajoua K, Le Vot S, et al. Modifications of MXene layers for supercapacitors. <italic>Nano Energy</italic>, 2020, 73: 104734
|
[19] |
张莹, 刘开宇, 张伟, 等. 弱结晶二氧化锰超级电容器充放电分析. 北京科技大学学报, 2008, 30(7):775 doi: 10.3321/j.issn:1001-053X.2008.07.015
Zhang Y, Liu K Y, Zhang W, et al. Charge-discharge process of a weak-crystalline manganese dioxide supercapacitor. <italic>J Univ Sci Technol Beijing</italic>, 2008, 30(7): 775 doi: 10.3321/j.issn:1001-053X.2008.07.015
|
[20] |
Yu P, Cao G J, Yi S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. <italic>Nanoscale</italic>, 2018, 10(13): 5906 doi: 10.1039/C8NR00380G
|
[21] |
Liu C, Wu J C, Zhou H T, et al. Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor. <italic>Molecules</italic>, 2019, 24(14): 2589 doi: 10.3390/molecules24142589
|
[22] |
Levitt A S, Alhabeb M, Hatter C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. <italic>J Mater Chem A</italic>, 2019, 7(1): 269 doi: 10.1039/C8TA09810G
|
[23] |
Li J M, Levitt A, Kurra N, et al. MXene-conducting polymer electrochromic microsupercapacitors. <italic>Energy Storage Mater</italic>, 2019, 20: 455 doi: 10.1016/j.ensm.2019.04.028
|
[24] |
Bao L H, Zang J F, Li X D. Flexible Zn<sub>2</sub>SnO<sub>4</sub>/MnO<sub>2</sub> core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. <italic>Nano Lett</italic>, 2011, 11(3): 1215 doi: 10.1021/nl104205s
|
[25] |
Chang J K, Huang C H, Lee M T, et al. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. <italic>Electrochim Acta</italic>, 2009, 54(12): 3278 doi: 10.1016/j.electacta.2008.12.042
|
[26] |
Shen L, Zhou X Y, Zhang X L, et al. Carbon-intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub> MXene for high-performance electrochemical energy storage. <italic>J Mater Chem A</italic>, 2018, 6(46): 23513 doi: 10.1039/C8TA09600G
|
[27] |
Yoon Y, Lee M, Kim S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. <italic>Adv Energy Mater</italic>, 2018, 8(15): 1703173 doi: 10.1002/aenm.201703173
|
[28] |
Mojtabavi M, VahidMohammadi A, Liang W T, et al. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. <italic>ACS Nano</italic>, 2019, 13(3): 3042 doi: 10.1021/acsnano.8b08017
|
[29] |
Boota M, Gogotsi Y. MXene-conducting polymer asymmetric pseudocapacitors. <italic>Adv Energy Mater</italic>, 2019, 9(7): 1802917 doi: 10.1002/aenm.201802917
|