HUANG Ying-ying, LI Geng-hui, ZHAO Bo, LU Jin-lin, KANG Shu-mei, CHEN Shu-wen. Preparation and energy storage properties of V2O5/MXene nanocomposites[J]. Chinese Journal of Engineering, 2020, 42(8): 1018-1028. DOI: 10.13374/j.issn2095-9389.2019.11.07.002
Citation: HUANG Ying-ying, LI Geng-hui, ZHAO Bo, LU Jin-lin, KANG Shu-mei, CHEN Shu-wen. Preparation and energy storage properties of V2O5/MXene nanocomposites[J]. Chinese Journal of Engineering, 2020, 42(8): 1018-1028. DOI: 10.13374/j.issn2095-9389.2019.11.07.002

Preparation and energy storage properties of V2O5/MXene nanocomposites

More Information
  • Corresponding author:

    CHEN Shu-wen, E-mail: 783636211@qq.com

  • Received Date: November 06, 2019
  • Available Online: March 05, 2020
  • Published Date: September 10, 2020
  • Supercapacitors are usually used in new energy storage devices, communication technology, military, and aerospace fields due to their long lifecycle and high power density. Presently, it is imperative to find the electrode materials with low cost and excellent capacity. MXenes have received increasing attention due to their unique physical and chemical properties. They not only have superior electrical conductivity but also contain abundant surface groups (−OH, −F or −O); therefore, they are regarded as versatile 2D materials. MXenes can generate higher volumetric capacitance than that of graphene. However, MXene nanosheets are inclined to stack together, limiting the electrochemical properties of supercapacitors. In this work, an MXene (Ti3C2Tx) was obtained by etching an MAX (Ti3AlC2) phase using HF. To expand the interlayer spacing of Ti3C2Tx, the liquid-phase intercalation method was adopted. After the interlayer spacing was expanded, V2O5 nanosheet (NSV) and V2O5 nanobelt (NBV) were loaded on the MXene surface by a facile hydrothermal process. Their structure and morphology were characterized using different techniques, such as X-ray diffraction, Brunauer–Emmett–Teller surface area measurements, and field-emission scanning electron microscopy. The results show that the interlayer spacing of MXene is increased after liquid-phase intercalation, and NSV and NBV are uniformly loaded on the MXene surface. Moreover, the specific surface areas of the NSV/MXene and NSV/MXene nanocomposites are higher than that of the MXene; therefore, the nanocomposites can provide more active sites for electrochemical reactions. The electrochemical performances of the nanocomposites were investigated in 1.0 mol·L−1 Na2SO4 and 1.0 mol·L−1 LiNO3 aqueous solutions. The specific capacitances of V2O5, MXene, NSV/MXene, and NBV/MXene are 8.1, 15.7, 96.8, and 88.5 F·g−1 in 1.0 mol·L−1 Na2SO4, respectively. When they are tested in 1.0 mol·L−1 LiNO3, their specific capacitances are 64.6, 46.7, 180.0, and 114.0 F·g−1, respectively. Therefore, the NSV/MXene nanocomposite is a potential electrode material for supercapacitors.
  • [1]
    Li S, Niu J J, Zhao Y C, et al. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. <italic>Nat Commun</italic>, 2015, 6: 7872 doi: 10.1038/ncomms8872
    [2]
    Liu Q, Nayfeh O, Nayfeh M H, et al. Flexible supercapacitor sheets based on hybrid nanocomposite materials. <italic>Nano Energy</italic>, 2013, 2(1): 133 doi: 10.1016/j.nanoen.2012.08.007
    [3]
    Yu J J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. <italic>J Rare Met</italic>, 2018, 42(5): 449
    [4]
    Wu B, Liao B, Liu X, Wen J K. A study on electrochemical fundamentals and kinetics of bioleaching of chalcocite. <italic>J Rare Met</italic>, 2019, 43(12): 1332
    [5]
    Wu L, Zhong S K, Lu J J, et al. Synthesis of Cr-doped LiMnPO<sub>4</sub>/C cathode materials by sol-gel combined ball milling method and its electrochemical properties. <italic>Ionics</italic>, 2013, 19(7): 1061 doi: 10.1007/s11581-013-0919-9
    [6]
    He B, Chen P, Xie Y, et al. 20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion. <italic>Bioorg Med Chem Lett</italic>, 2017, 27(16): 3867 doi: 10.1016/j.bmcl.2017.06.045
    [7]
    Chen C, Xie X Q, Anasori B, et al. MoS<sub>2</sub>-on-MXene heterostructures as highly reversible anode materials for lithium‐ion batteries. <italic>Angew Chem Int Ed</italic>, 2018, 57(7): 1846 doi: 10.1002/anie.201710616
    [8]
    Zhang X, Zhang Z H, Zhou Z. MXene-based materials for electrochemical energy storage. <italic>J Energy Chem</italic>, 2018, 27(1): 73 doi: 10.1016/j.jechem.2017.08.004
    [9]
    Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO<sub>2</sub> asymmetric supercapacitors. <italic>Adv Energy Mater</italic>, 2018, 8(13): 1703043 doi: 10.1002/aenm.201703043
    [10]
    Yang J, Lan T B, Liu J D, et al. Supercapacitor electrode of hollow spherical V<sub>2</sub>O<sub>5</sub> with a high pseudocapacitance in aqueous solution. <italic>Electrochim Acta</italic>, 2013, 105: 489 doi: 10.1016/j.electacta.2013.05.023
    [11]
    Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using <italic>in situ</italic> X-ray absorption spectroscopy. <italic>Adv Energy Mater</italic>, 2015, 5(15): 1500589 doi: 10.1002/aenm.201500589
    [12]
    Lv G X, Wang J, Shi Z Q, et al. Intercalation and delamination of two-dimensional MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub>) and application in sodium-ion batteries. <italic>Mater Lett</italic>, 2018, 219: 45 doi: 10.1016/j.matlet.2018.02.016
    [13]
    VahidMohammadi A, Kayali E, Orangi J, et al. Techniques for MXene delamination into single-layer flakes // 2D Metal Carbides and Nitrides (MXenes). Cham: Springer, 2019: 177
    [14]
    Feng W L, Luo H, Wang Y, et al. Ultrasonic assisted etching and delaminating of Ti<sub>3</sub>C<sub>2</sub> Mxene. <italic>Ceram Int</italic>, 2018, 44(6): 7084 doi: 10.1016/j.ceramint.2018.01.147
    [15]
    Dong Y C, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti<sub>3</sub>C<sub>2</sub> MXene thin films for passive photonic diodes. <italic>Adv Mater</italic>, 2018, 30(10): 1705714 doi: 10.1002/adma.201705714
    [16]
    Wang H Y, Shao X Z, Wang L, et al. Effect of Ce doping into V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> catalysts on the selective catalytic reduction of NO<sub><italic>x</italic></sub> by NH<sub>3</sub>. <italic>J Rare Met</italic>, 2017, 42(1): 53
    [17]
    Wang D S, Li F, Lian R Q, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub>2</sub> MXene in lithium–sulfur batteries. <italic>ACS Nano</italic>, 2019, 13(10): 11078 doi: 10.1021/acsnano.9b03412
    [18]
    Zhu Y, Rajoua K, Le Vot S, et al. Modifications of MXene layers for supercapacitors. <italic>Nano Energy</italic>, 2020, 73: 104734
    [19]
    张莹, 刘开宇, 张伟, 等. 弱结晶二氧化锰超级电容器充放电分析. 北京科技大学学报, 2008, 30(7):775 doi: 10.3321/j.issn:1001-053X.2008.07.015

    Zhang Y, Liu K Y, Zhang W, et al. Charge-discharge process of a weak-crystalline manganese dioxide supercapacitor. <italic>J Univ Sci Technol Beijing</italic>, 2008, 30(7): 775 doi: 10.3321/j.issn:1001-053X.2008.07.015
    [20]
    Yu P, Cao G J, Yi S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. <italic>Nanoscale</italic>, 2018, 10(13): 5906 doi: 10.1039/C8NR00380G
    [21]
    Liu C, Wu J C, Zhou H T, et al. Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor. <italic>Molecules</italic>, 2019, 24(14): 2589 doi: 10.3390/molecules24142589
    [22]
    Levitt A S, Alhabeb M, Hatter C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. <italic>J Mater Chem A</italic>, 2019, 7(1): 269 doi: 10.1039/C8TA09810G
    [23]
    Li J M, Levitt A, Kurra N, et al. MXene-conducting polymer electrochromic microsupercapacitors. <italic>Energy Storage Mater</italic>, 2019, 20: 455 doi: 10.1016/j.ensm.2019.04.028
    [24]
    Bao L H, Zang J F, Li X D. Flexible Zn<sub>2</sub>SnO<sub>4</sub>/MnO<sub>2</sub> core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. <italic>Nano Lett</italic>, 2011, 11(3): 1215 doi: 10.1021/nl104205s
    [25]
    Chang J K, Huang C H, Lee M T, et al. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. <italic>Electrochim Acta</italic>, 2009, 54(12): 3278 doi: 10.1016/j.electacta.2008.12.042
    [26]
    Shen L, Zhou X Y, Zhang X L, et al. Carbon-intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub> MXene for high-performance electrochemical energy storage. <italic>J Mater Chem A</italic>, 2018, 6(46): 23513 doi: 10.1039/C8TA09600G
    [27]
    Yoon Y, Lee M, Kim S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. <italic>Adv Energy Mater</italic>, 2018, 8(15): 1703173 doi: 10.1002/aenm.201703173
    [28]
    Mojtabavi M, VahidMohammadi A, Liang W T, et al. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. <italic>ACS Nano</italic>, 2019, 13(3): 3042 doi: 10.1021/acsnano.8b08017
    [29]
    Boota M, Gogotsi Y. MXene-conducting polymer asymmetric pseudocapacitors. <italic>Adv Energy Mater</italic>, 2019, 9(7): 1802917 doi: 10.1002/aenm.201802917

Catalog

    Article Metrics

    Article views (6654) PDF downloads (250) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return