MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. DOI: 10.13374/j.issn2095-9389.2019.07.27.003
Citation: MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. DOI: 10.13374/j.issn2095-9389.2019.07.27.003

Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions

More Information
  • Corresponding author:

    ZHANG Lei, E-mail: zhanglei@ustb.edu.cn

  • Received Date: July 26, 2019
  • Available Online: August 02, 2020
  • Published Date: September 10, 2020
  • With the growing of CO2 corrosion problem in multiphase oil and gas in-field pipelines, carbon steel can no longer meet the continuously growing demand for energy consumption. At the same time, the water content in the gathering pipelines and the complex phase distribution of the oil and water phases make the service environment of the pipeline steel increasingly demanding. Recently, the low Cr-containing steel, which shows an excellent performance-price ratio with a better CO2 corrosion resistance, is expected to replace the carbon steel used for pipelines. However, the application of 3Cr is limited under the conditions of oil-water flows, especially those with corrosion inhibitor. For example, the absolute value of the uniform corrosion rate is still relatively high in environments of high-carbon dioxide, and using corrosion inhibitor in the application of Cr-containing low-alloy steels is still necessary. Some researchers found that the corrosion inhibitor of imidazoline quaternary ammonium salt can better control the corrosion caused by carbon dioxide in the application of 3Cr steel. Since the corrosion resistance of Cr-containing low-alloy steel depends on the formation of corrosion products, it is highly susceptible to corrosion inhibitors, and research on its compatibility with corrosion inhibitors is still lacking. In this study, the corrosion resistance of 3Cr steel and the effect of corrosion inhibitor on the resistance were evaluated in an oil-water two-phase environment by using a high-temperature and high-pressure autoclave combined with SEM (scanning electron microscope), XRD (X-ray diffraction), confocal Raman spectroscopy, and electrochemical impedance spectroscopy. The results show that the corrosion scales formed on the 3Cr steel consist of two layers, and the inner layer is a Cr-rich layer in this environments, exhibiting good resistance to CO2 corrosion under the conditions of oil-water flows. However, after adding 100 mg·L−1 corrosion inhibitor of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt, 3Cr steel has not been effectively protected from corrosion. The analysis of the corrosion product and electrochemical tests revealed that competition exited between alkane molecules, corrosion inhibitor molecules and Cr-rich layers and the alkanes interfered with the ordered arrangement of the corrosion inhibitor and thus affected the corrosion resistance of 3Cr steel.
  • [1]
    Pouraria H, Seo J K, Paik J K. A numerical study on water wetting associated with the internal corrosion of oil pipelines. <italic>Ocean Eng</italic>, 2016, 122: 105 doi: 10.1016/j.oceaneng.2016.06.022
    [2]
    Gardner T, Paolinelli L D, Nesic S. Study of water wetting in oil-water flow in a small-scale annular flume. <italic>Exp Therm Fluid Sci</italic>, 2019, 102: 506 doi: 10.1016/j.expthermflusci.2018.12.010
    [3]
    Choi H J, Tonsuwannarat T. Unique roles of hydrocarbons in flow-induced sweet corrosion of X-52 carbon steel in wet gas condensate producing wells // The 57th NACE Annual Conference. Houston, 2002: 02259
    [4]
    Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel // The 59th NACE Annual Conference. Houston, 2004: 04664
    [5]
    Pigliacampo L, Gonzales J C, Turconi G L. Window of application an operational track of low carbon 3Cr steel tubular // The 61th NACE Annual Conference. Houston, 2006: 06133
    [6]
    胡丽华, 俞曼丽, 常炜, 等. Cr含量对低合金管线钢CO<sub>2</sub>腐蚀性能的影响. 腐蚀科学与防护技术, 2011, 23(3):256

    Hu L H, Yu M L, Chang W, et al. Effect of Cr content on resistance to CO<sub>2</sub>-induced corrosion of low alloy pipeline steels. <italic>Corros Sci Prot Technol</italic>, 2011, 23(3): 256
    [7]
    Liu W, Lu S L, Zhang P, et al. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO<sub>2</sub> aqueous environment. <italic>Appl Surf Sci</italic>, 2016, 379: 163 doi: 10.1016/j.apsusc.2016.04.044
    [8]
    张雷, 胡丽华, 孙建波, 等. 抗CO<sub>2</sub>腐蚀低Cr管线钢组织和性能研究. 材料工程, 2009(5):6 doi: 10.3969/j.issn.1001-4381.2009.05.002

    Zhang L, Hu L H, Sun J B, et al. Microstructure and properties of CO<sub>2</sub> corrosion resistant low Cr pipeline steels. <italic>J Mater Eng</italic>, 2009(5): 6 doi: 10.3969/j.issn.1001-4381.2009.05.002
    [9]
    Guo S Q, Xu L N, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO<sub>2</sub> environments. <italic>Corros Sci</italic>, 2012, 63: 246 doi: 10.1016/j.corsci.2012.06.006
    [10]
    Xie Y, Xu L N, Gao C L, et al. Corrosion behavior of novel 3%Cr pipeline steel in CO<sub>2</sub> top-of-line corrosion environment. <italic>Mater Des</italic>, 2012, 36: 54 doi: 10.1016/j.matdes.2011.11.003
    [11]
    许立宁, 朱金阳, 谢云, 等. 含Cr管线钢的力学性能和耐蚀性能. 北京科技大学学报, 2014, 36(2):200

    Xu L N, Zhu J Y, Xie Y, et al. Mechanical properties and corrosion behavior of Cr containing pipeline steel. <italic>J Univ Sci Technol Beijing</italic>, 2014, 36(2): 200
    [12]
    Kermani B, Gonzales J C, Turconi G L, et al. In-field corrosion performance of 3% Cr steels in sweet and sour downhole production and water injection // Corrosion 2004. New Orleans, 2004: NACE-04111
    [13]
    Chen C F, Lu M X, Sun D B, et al. Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system. <italic>Corrosion</italic>, 2005, 61(6): 594 doi: 10.5006/1.3278195
    [14]
    Hua Y, Mohammed S, Barker R, et al. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO<sub>2</sub>-saturated brine. <italic>J Mater Sci Technol</italic>, 2020, 41(15): 21
    [15]
    Wei L, Gao K W. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO<sub>2</sub>-saturated aqueous environments. <italic>J Alloys Compd</italic>, 2019, 792(5): 328
    [16]
    Zhu J Y, Xu L N, Lu M X, et al. Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO<sub>2</sub> environments: prepassivation. <italic>Corros Sci</italic>, 2015, 93: 336 doi: 10.1016/j.corsci.2015.01.030
    [17]
    王磊. CO2腐蚀产物膜微观结构与离子选择性研究[学位论文]. 北京: 中国石油大学(北京), 2007

    Wang L. Microstructure and Ion Selectivity of CO2 Corrosion Product Films [Dissertation]. Beijing: China University of Petroleum, Beijing, 2007
    [18]
    王珂, 尹志福, 杨帆, 等. 模拟CO<sub>2</sub>驱环境下3Cr和20#集输管线钢防腐性能对比. 全面腐蚀控制, 2013, 27(7):45 doi: 10.3969/j.issn.1008-7818.2013.07.012

    Wang K, Yin Z F, Yang F, et al. Comparison of anti-corrosion properties of pipeline steels between 3Cr and 20<sup>#</sup> under simulated CO<sub>2</sub> flooding environment. <italic>Total Corros Control</italic>, 2013, 27(7): 45 doi: 10.3969/j.issn.1008-7818.2013.07.012
    [19]
    王珂, 张永强, 尹志福, 等. N80和3Cr油管钢在CO<sub>2</sub>驱油环境中的腐蚀行为. 腐蚀与防护, 2015, 36(8):706 doi: 10.11973/fsyfh-201508003

    Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO<sub>2</sub> flooding environment. <italic>Corros Prot</italic>, 2015, 36(8): 706 doi: 10.11973/fsyfh-201508003
    [20]
    Kee K E, Richter S, Babic M, et al. Experimental study of oil-water flow patterns in a large diameter flow loop—the effect on water wetting and corrosion. <italic>Corrosion</italic>, 2015, 72(4): 569
    [21]
    崔丽, 高艳, 顾长石, 等. 微量元素Cr对船用耐蚀钢焊接接头组织和性能的影响. 北京工业大学学报, 2018, 44(6):953

    Cui L, Gao Y, Gu C S, et al. Effect of trace element Cr on microstructures and properties of welded Joints of marine corrosion resisting steels. <italic>J Beijing Univ Technol</italic>, 2018, 44(6): 953
    [22]
    Wang B, Xu L N, Liu G Z, et al. Corrosion behavior and mechanism of 3Cr steel in CO<sub>2</sub> environment with various Ca<sup>2+</sup> concentration. <italic>Corros Sci</italic>, 2018, 136: 210 doi: 10.1016/j.corsci.2018.03.013
    [23]
    林学强. 碳钢和低合金钢在含O2高温高压CO2油气田环境中腐蚀行为研究[学位论文]. 北京: 北京科技大学, 2015

    Lin X Q. Corrosion Behavior of Carbon steel and Low Alloy Steel in CO2 and O2 High Temperature and High Pressure Environment of Oil and Gas Fields[Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [24]
    刘嘉欣, 周子力, 曹中秋, 等. Cu-50Co块体合金在NaCl溶液中的腐蚀性能研究. 稀有金属, 2020, 44(2):127

    Liu J X, Zhou Z L, Cao Z Q, et al. Corrosion properties of Cu-50Co bulk alloys in NaCl solution. <italic>Chin J Rare Met</italic>, 2020, 44(2): 127
    [25]
    Zhu J Y, Xu L N, Lu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO<sub>2</sub>-saturated oilfield formation waters. <italic>Corrosion</italic>, 2015, 71(7): 854 doi: 10.5006/1494
    [26]
    Li C, Richter S, Nesic S. How do inhibitors mitigate corrosion in oil-water two-phase flow beyond lowering the corrosion rate. <italic>Corrosion</italic>, 2014, 70(9): 958 doi: 10.5006/1057
    [27]
    Zhu J Y, Xu L N, Lu M X, et al. Interaction effect between Cr(OH)<sub>3</sub> passive layer formation and inhibitor adsorption on 3Cr steel surface. <italic>RSC Adv</italic>, 2015, 5(24): 18518 doi: 10.1039/C4RA15519J

Catalog

    Article Metrics

    Article views (1840) PDF downloads (65) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return