YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. DOI: 10.13374/j.issn2095-9389.2019.07.21.002
Citation: YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. DOI: 10.13374/j.issn2095-9389.2019.07.21.002

Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference

More Information
  • Corresponding author:

    WANG Xin-hua, E-mail: wxhemma2005@163.com

  • Received Date: July 20, 2019
  • Available Online: June 22, 2020
  • Published Date: June 30, 2020
  • In recent years, many accidents caused by alternating current (AC) corrosion have been reported. AC corrosion has become a serious potential damage to buried steel pipelines. The X100 pipeline steel is a very promising material for long-distance gas pipelines, and Korla soil is a typical saline-alkali soil of West China. The coarse-grained heat-affected zone (CGHAZ) and the intercritically reheated coarse-grained heat-affected zone (ICCGHAZ) were simulated by a Gleeble thermomechanical processing machine through different thermal cycle times, peak temperatures, and cooling rates. Electrochemical corrosion measurements, immersion experiments and surface analysis techniques were used to characterize the corrosion behavior of the base metal, CGHAZ, and ICCGHAZ of the X100 pipeline steel in simulated Korla soil solution under AC interference. The X100 pipeline steel base metal, CGHAZ, and ICCGHAZ exhibited active dissolution in the simulated Korla soil solution under AC interference, and the average corrosion rate increased with the increase in AC density. The amplitude of the polarization potential oscillation caused by AC interference and the microstructure had an important influence on the corrosion rate and corrosion morphology of the X100 pipeline steel base metal, CGHAZ and ICCGHAZ. Under the interference of 5 mA·cm‒2 AC density, the X100 pipeline steel base material shows the most negative corrosion potential and the largest average corrosion rate, while the ICCGHAZ shows the most positive corrosion potential and the smallest average corrosion rate. Under the interferences of 20 and 50 mA·cm‒2 AC densities, the ICCGHAZ of X100 pipeline steel shows the most negative corrosion potential and the largest average corrosion rate, while the base metal shows the most positive corrosion potential and the smallest average corrosion rate. Under the interference of 20 mA·cm‒2 AC density, the X100 pipeline steel is locally corroded. CGHAZ and ICCGHAZ have obvious grain boundary corrosion, whereby GCHAZ grain boundary corrosion morphology is slit-shaped, and ICCGHAZ grain boundary corrosion morphology is continuous pores.
  • [1]
    杜伟, 李鹤林, 王海涛, 等. 国内外高性能油气输送管的研发现状. 油气储运, 2016, 35(6):577

    Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577
    [2]
    Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074
    [3]
    Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009
    [4]
    刘成虎, 柳伟, 路民旭. X60钢及其焊接热影响区的腐蚀行为对比研究. 中国腐蚀与防护技术, 2008, 20(3):206

    Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206
    [5]
    范舟, 刘建仪, 李士伦, 等. X70管线钢焊接接头组织及其海水腐蚀规律. 西南石油大学学报: 自然科学版, 2009, 31(5):171

    Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171
    [6]
    Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014
    [7]
    Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725
    [8]
    Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412
    [9]
    张敏, 李乐, 程康康, 等. X100管线钢焊接接头在酸性环境中的腐蚀行为分析. 兵器材料科学与工程, 2018, 41(6):1

    Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1
    [10]
    Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003
    [11]
    Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985
    [12]
    Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5
    [13]
    Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030
    [14]
    Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34
    [15]
    Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443
    [16]
    符耀庆, 王秀通, 陈胜利. 南朗段埋地天然气管道杂散电流检测与治理. 表面技术, 2016, 45(2):22

    Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22
    [17]
    Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209
    [18]
    梁平, 杜翠薇, 李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究. 中国腐蚀与防护学报, 2011, 31(2):97

    Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97
    [19]
    Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012
    [20]
    Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189
    [21]
    王晓霖, 闫茂成, 舒韵, 等. 破损涂层下管线钢的交流电干扰腐蚀行为. 中国腐蚀与防护学报, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118

    Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118
    [22]
    Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436
    [23]
    Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007
    [24]
    王新华, 杨国勇, 黄海, 等. 埋地钢质管道交流杂散电流腐蚀规律研究. 中国腐蚀与防护学报, 2013, 33(4):293

    Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293
    [25]
    万红霞, 宋东东, 刘智勇, 等. 交流电对X80钢在近中性环境中腐蚀行为的影响. 金属学报, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500

    Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500
    [26]
    朱敏, 杜翠薇, 李晓刚, 等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响. 中国腐蚀与防护学报, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127

    Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127
    [27]
    李学达, 李霞, 王世新, 等. 第二道次焊接热循环冷却速度对X100管线钢临界再热粗晶区组织及冲击性能的影响. 金属热处理, 2017, 42(9):66

    Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66
    [28]
    Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0
    [29]
    Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030
    [30]
    Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015

Catalog

    Article Metrics

    Article views (1544) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return