Citation: | XIAO Na, HUI Wei-jun, ZHANG Yong-jian, ZHAO Xiao-li, CHEN Ying. Detection of nonmetallic inclusion in high-strength gear steel with high cleanliness[J]. Chinese Journal of Engineering, 2020, 42(7): 912-921. DOI: 10.13374/j.issn2095-9389.2019.07.15.005 |
[1] |
Savaria V, Bridier F, Bocher P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int J Fatigue, 2016, 85: 70 doi: 10.1016/j.ijfatigue.2015.12.004
|
[2] |
Jo B, Sharifimehr S, Shim Y, et al. Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states. Int J Fatigue, 2017, 100: 454 doi: 10.1016/j.ijfatigue.2016.12.023
|
[3] |
Nehila A, Li W, Gao N, et al. Very high cycle fatigue of surface carburized CrNi steel at variable stress ratio: failure analysis and life prediction. Int J Fatigue, 2018, 111: 112 doi: 10.1016/j.ijfatigue.2018.02.006
|
[4] |
Liu P F, Li W, Nehila A, et al. High cycle fatigue property of carburized 20Cr gear steel under axial loading. Metals, 2016, 6(10): 246 doi: 10.3390/met6100246
|
[5] |
Mengaroni S, Bambach M D, Cianetti F, et al. Strengthening improvement on gear steels. Steel Res Int, 2016, 87(5): 608 doi: 10.1002/srin.201500155
|
[6] |
Dong W L, Ni H W, Zhang H, et al. Effect of slag composition on the cleanliness of 28MnCr5 gear steel in the refining processes. Int J Miner Metall Mater, 2016, 23(3): 269 doi: 10.1007/s12613-016-1235-y
|
[7] |
Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int J Fatigue, 1989, 11(5): 291 doi: 10.1016/0142-1123(89)90054-6
|
[8] |
Atkinson H V, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci, 2003, 48(5): 457 doi: 10.1016/S0079-6425(02)00014-2
|
[9] |
Bartosiaki B G, Pereira J A M, Bielefeldt W V, et al. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel. J Mater Res Technol, 2015, 4(3): 235 doi: 10.1016/j.jmrt.2015.01.008
|
[10] |
Yu H X, Shao X J, Zhang J, et al. Study on the quantitative relationship between total oxygen content and non-metallic inclusion in steel with ASPEX SEM. Chin J Eng, 2015, 37(增刊1): 35
于会香, 邵肖静, 张静, 等. 采用ASPEX扫描电镜研究钢中总氧和非金属夹杂物的定量关系. 工程科学学报, 2015, 37(增刊1):35)
|
[11] |
Furuya Y, Matsuoka S, Abe T. A novel inclusion inspection method employing 20 kHz fatigue testing. Metall Mater Trans A, 2003, 34(11): 2517 doi: 10.1007/s11661-003-0011-6
|
[12] |
Zhang J M, Zhang J F, Yang Z G, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Mater Sci Eng A, 2005, 394(1-2): 126 doi: 10.1016/j.msea.2004.11.015
|
[13] |
Shi G, Atkinson H V, Sellars C M, et al. Maximum inclusion size in two clean steels Part 2 use of data from cold crucible remelted samples and polished optical cross-sections. Ironmaking Steelmaking, 2000, 27(5): 361 doi: 10.1179/030192300677660
|
[14] |
杨振国, 张继明, 李守新, 等. 高周疲劳条件下高强钢临界夹杂物尺寸估算. 金属学报, 2005, 41(11):1136 doi: 10.3321/j.issn:0412-1961.2005.11.004
Yang Z G, Zhang J M, Li S X, et al. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition. Acta Metall Sin, 2005, 41(11): 1136 doi: 10.3321/j.issn:0412-1961.2005.11.004
|
[15] |
Fujita S, Murakami Y. A new nonmetallic inclusion rating method by positive use of hydrogen embrittlement phenomenon. Metall Mater Trans A, 2013, 44(1): 303 doi: 10.1007/s11661-012-1376-1
|
[16] |
Hui W J, Xu Z B, Zhang Y J, et al. Hydrogen embrittlement behavior of high strength rail steels: A comparison between pearlitic and bainitic microstructure. Mater Sci Eng A, 2017, 704: 199 doi: 10.1016/j.msea.2017.08.022
|
[17] |
Wang C, Petit J, Huang Z Y, et al. Investigation of crack initiation mechanisms responsible for the fish eye formation in the very high cycle fatigue regime. Int J Fatigue, 2019, 119: 320 doi: 10.1016/j.ijfatigue.2018.06.016
|
[18] |
Zhu M L, Jin L, Xuan F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes. Acta Mater, 2018, 157: 259 doi: 10.1016/j.actamat.2018.07.036
|
[19] |
Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels. ISIJ Int, 2016, 56(1): 24 doi: 10.2355/isijinternational.ISIJINT-2015-430
|
[20] |
Otsuka T, Hanada H, Nakashima H, et al. Observation of hydrogen distribution around non-metallic inclusions in steels with tritium microautoradiography. Fusion Sci Technol, 2005, 48(1): 708 doi: 10.13182/FST05-A1022
|
[21] |
Takai K, Seki J I, Homma Y. Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry. Mater Trans JIM, 1995, 36(9): 1134 doi: 10.2320/matertrans1989.36.1134
|
[22] |
褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀. 北京: 科学出版社, 2013
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking. Beijing: Science Press, 2013
|
[23] |
Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater, 2016, 113: 1 doi: 10.1016/j.actamat.2016.04.038
|
[24] |
Qi Y M, Luo H Y, Zheng S Q, et al. Effect of immersion time on the hydrogen content and tensile properties of A350LF2 steel exposed to hydrogen sulphide environments. Corros Sci, 2013, 69: 164 doi: 10.1016/j.corsci.2012.11.038
|
[25] |
Todoshchenko O M I, Yagodzinskyy Y, Saukkonen T, et al. Role of nonmetallic inclusions in hydrogen embrittlement of high-strength carbon steels with different microalloying. Metall Mater Trans A, 2014, 45(11): 4742 doi: 10.1007/s11661-014-2447-2
|
[26] |
Genel K. Estimation method for the fatigue limit of case hardened steels. Surf Coat Technol, 2005, 194(1): 91 doi: 10.1016/j.surfcoat.2004.04.077
|
[27] |
Liu Y B, Li Y D, Li S X, et al. Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime. Int J Fatigue, 2010, 32(8): 1351 doi: 10.1016/j.ijfatigue.2010.02.006
|