Citation: | ZHANG Zhi-quan, ZHOU Bang-xin, WANG Jun-an, LIU Wen-qing. Redistribution of Mn between α-Fe matrix and θ cementite during long-term thermal aging in a low alloy steel[J]. Chinese Journal of Engineering, 2020, 42(3): 340-347. DOI: 10.13374/j.issn2095-9389.2019.04.24.005 |
[1] |
Boyer H. Fundamentals of Ferrous Metallurgy. Ohio: Materials Engineering Institute, ASM International, 1981
|
[2] |
Totten G E. Steel Heat Treatment: Metallurgy and Technology. 2nd Ed. Portland: Taylor & Francis, 2007
|
[3] |
Grange R A, Hribal C R, Porter L F. Hardness of tempered martensite in carbon and low-alloy steels. Metall Trans A, 1977, 8(11): 1775 doi: 10.1007/BF02646882
|
[4] |
Miyamoto G, Oh J C, Hono K, et al. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe-0.6 mass% C martensite. Acta Mater, 2007, 55(15): 5027 doi: 10.1016/j.actamat.2007.05.023
|
[5] |
Ghosh G, Olson G B. Precipitation of paraequilibrium cementite: experiments, and thermodynamic and kinetic modeling. Acta Mater, 2002, 50(8): 2099 doi: 10.1016/S1359-6454(02)00054-X
|
[6] |
Babu S S, Hono K, Sakurai T. Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metall Mater Trans A, 1994, 25(3): 499 doi: 10.1007/BF02651591
|
[7] |
Gurry R W, Christakos J, Darken L. Size, manganese content, and curie point of carbides extracted from manganese steel. Trans ASM, 1961, 53: 187
|
[8] |
Thomson R C, Miller M K. Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels. Acta Mater, 1998, 46(2): 2203
|
[9] |
Thomson R C, Miller M K. The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels. Appl Surf Sci, 1995, 87-88: 185 doi: 10.1016/0169-4332(94)00496-X
|
[10] |
Sato T, Nishizawa T. Partitioning of alloying elements between ferrite and cementite. J Jpn Inst Met, 1955, 19: 385 doi: 10.2320/jinstmet1952.19.6_385
|
[11] |
Babu S S, Hono K, Sakurai T. APFIM studies on martensite tempering of Fe–C–Si–Mn low alloy steel. Appl Surf Sci, 1993, 67(1-4): 321 doi: 10.1016/0169-4332(93)90333-7
|
[12] |
Zhu K Y, Shi H, Chen H, et al. Effect of Al on martensite tempering: comparison with Si. J Mater Sci, 2018, 53(9): 6951 doi: 10.1007/s10853-018-2037-6
|
[13] |
Ande C K, Sluiter M H F. First-principles prediction of partitioning of alloying elements between cementite and ferrite. Acta Mater, 2010, 58(19): 6276 doi: 10.1016/j.actamat.2010.07.049
|
[14] |
Zhu C, Xiong X Y, Cerezo A, et al. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy, 2007, 107(9): 808 doi: 10.1016/j.ultramic.2007.02.033
|
[15] |
Parsons D E, Malis T F, Boyd J D. Microalloying and precipitation in Cr–V rail steels. J Heat Treat, 1984, 3(3): 213 doi: 10.1007/BF02833263
|
[16] |
Ridley N, Malik M A, Lorimer G W. Partitioning and pearlite growth kinetics in an Ni–Cr eutectoid steel. Mater Charact, 1990, 25(1): 125 doi: 10.1016/1044-5803(90)90025-F
|
[17] |
Lis J, Morgiel J, Lis A. The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques. Mater Chem Phys, 2003, 81(2-3): 466 doi: 10.1016/S0254-0584(03)00053-1
|
[18] |
Miller M K, Smith G D W. Atom probe microanalysis of a pearlitic steel. Met Sci, 1977, 11(7): 249 doi: 10.1179/msc.1977.11.7.249
|
[19] |
Lis J, Lis A, Kolan C. Manganese partitioning in low carbon manganese steel during annealing. Mater Charact, 2008, 59(8): 1021 doi: 10.1016/j.matchar.2007.08.020
|
[20] |
Ko M, Sakuma T, Nishizawa T. Effect of magnetism on the partition of alloying elements between cementite and ferrite. J Jpn Inst Met, 1976, 40(6): 593 doi: 10.2320/jinstmet1952.40.6_593
|
[21] |
Thomson R C, Miller M K. An atom probe study of cementite precipitation in autotempered martensite in an Fe‒Mn‒C alloy. Appl Surf Sci, 1996, 94-95: 313 doi: 10.1016/0169-4332(95)00392-4
|
[22] |
Miller M K, Forbes R G. Atom probe tomography. Mater Charact, 2009, 60(6): 461 doi: 10.1016/j.matchar.2009.02.007
|
[23] |
徐刚, 蔡琳玲, 冯柳, 等. 富Cu团簇的析出对RPV模拟钢韧‒脆转变温度的影响. 金属学报, 2012, 48(6):753 doi: 10.3724/SP.J.1037.2011.00668
Xu G, Cai L L, Feng L, et al. Effect of the precipitation of Cu-rich clusters on the DBTT of RPV simulated steel. Acta Metall Sin, 2012, 48(6): 753 doi: 10.3724/SP.J.1037.2011.00668
|
[24] |
Pareige P, Stoller R E, Russell K F, et al. Atom probe characterization of the microstructure of nuclear pressure vessel surveillance materials after neutron irradiation and after annealing treatments. J Nucl Mater, 1997, 249(2-3): 165 doi: 10.1016/S0022-3115(97)00215-8
|
[25] |
Meslin E, Radiguet B, Pareige P, et al. Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography. J Nucl Mater, 2010, 399(2-3): 137 doi: 10.1016/j.jnucmat.2009.11.012
|
[26] |
Miller M K. Atom Probe Tomography Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers, 2000: 25
|
[27] |
Li C, Smith G D W. The silicon effect in the tempering of martensite in steels. J Phys, 1984, 45: 397
|
[28] |
Zelenty J, Smith G D W, Wilford K, et al. Secondary precipitation within the cementite phase of reactor pressure vessel steels. Scripta Mater, 2016, 115: 118 doi: 10.1016/j.scriptamat.2015.12.039
|
[29] |
Gale W F, Totemeier T C. Smithells Metals Reference Book. 8th Ed. London: Butterworth Heinemann, 2004
|
1. |
杨艳,赵锦龙. 电渣重熔和合金元素对车轮钢组织和性能的影响. 腐蚀与防护. 2023(02): 40-44+119 .
![]() | |
2. |
崔兰超,程志强. 热处理渗碳Cr-Mn钢疲劳失效仿真研究. 兵器材料科学与工程. 2022(04): 101-105 .
![]() |