SHAO Hui-qi, ZHANG You-wen, QU Chen, LI Wen-hui, ZHAO Yan-jun, LIU Ning, CAI Han-mei, WU Chuan-dong, LIU Jie-min. Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area[J]. Chinese Journal of Engineering, 2020, 42(3): 302-312. DOI: 10.13374/j.issn2095-9389.2019.04.23.001
Citation: SHAO Hui-qi, ZHANG You-wen, QU Chen, LI Wen-hui, ZHAO Yan-jun, LIU Ning, CAI Han-mei, WU Chuan-dong, LIU Jie-min. Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area[J]. Chinese Journal of Engineering, 2020, 42(3): 302-312. DOI: 10.13374/j.issn2095-9389.2019.04.23.001

Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area

More Information
  • Corresponding author:

    LIU Jie-min, E-mail: liujm@ustb.edu.cn

  • Received Date: April 22, 2019
  • Available Online: January 03, 2020
  • Published Date: February 29, 2020
  • Phytoremediation is an important means of soil heavy metal pollution remediation. In order to figure out the soil pollution status of the water source in the middle line of the South-to-North Water Transfer Project and repair it, soil samples (n = 14) and local dominant terrestrial plants (n = 113) were collected in typical areas around Chaobei River and the typical vanadium smelter in Hubei Province in four seasons. Microwave digestion–inductively coupled plasma mass spectrometry (ICP‒MS) was applied to analyze the concentrations of vanadium (V), chromium (Cr), arsenic (As), and cadmium (Cd) in soils and plants. Soil pollution levels were evaluated on the basis of the Nemerow index method. The enrichment capabilities of plants for the four heavy metals were also analyzed. Results show that the heavy metal content of soil around the junction of the sewage outfall and the river is the highest among the seven sampling sites around Chaobei River. The concentration of V in the raw ore stacking area exceeds the limit by approximately 83 times and the concentrations of Cr, As, and Cd exceed the limit by approximately 2 times, which make the soil in the raw ore stacking area heavily contaminated. The soils in the six other sampling sites in the smelter are polluted in different degrees. The results of the evaluation of the enrichment and tolerance capabilities indicate that Gnaphalium affine, Erigeron multifolius, and Erigeron annuus have the highest tolerance capability for the four heavy metals. Conyza canadensis, Imperata cylindrica, Solanum photeinocarpum, Dendranthema indicum, Trifolium repens, and Echinochloa crusgalli are the hyperaccumulators for V, Cr, and Cd. The enrichment capabilities of Pteris vittata and Broussonetia papyrifera for As are extremely high. Moreover, Artemisia lavandulaefolia has a high enrichment capability for Cr and Cd, Ludwigia prostrata and Picris japonica have prominent tolerance and enrichment specificities for Cr and V, and Potentilla chinensis and Phytolacca americana have obvious enrichment capabilities for Cd specifically. The pot experiments of five local dominant terrestrial plants illustrate that, under the composite heavy metal contaminant conditions, Boehmeria nivea has the highest tolerance capability and Potentilla chinensis has the highest enrichment capability.
  • [1]
    Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 2019, 174: 714 doi: 10.1016/j.ecoenv.2019.02.068
    [2]
    杨志英, 张建珠, 李春苑, 等. 土壤重金属污染及其修复技术研究现状. 绿色科技, 2018(22):62

    Yang Z Y, Zhang J Z, Li C Y, et al. Research of soil heavy metal pollution and the remediation technology. J Green Sci Technol, 2018(22): 62
    [3]
    李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展. 环境科学研究, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html

    Li X B, Dong H H, Ren L X, et al. Effects of chelating agent combination technologies on soil contaminated by heavy metals. Res Environ Sci, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html
    [4]
    王星, 郭斌, 王欣. 重金属污染土壤修复技术研究进展. 煤炭与化工, 2019, 42(1):156

    Wang X, Guo B, Wang X. Research progress on remediation technology of heavy metal contaminated soil. Coal Chem Ind, 2019, 42(1): 156
    [5]
    付广义, 邱亚群, 宋博宇, 等. 东江湖铅锌矿渣堆场优势植物重金属富集特征. 中南林业科技大学学报, 2019, 39(4):117

    Fu G Y, Qiu Y Q, Song B Y, et al. Heavy metals enrichment characteristics of the dominant plants in lead-zinc slag yard along Dongjiang lake reservoir. J Cent South Univ Forest Technol, 2019, 39(4): 117
    [6]
    Wang Z H, Liu X Y, Qin H Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J Geochem Explor, 2019, 200: 159 doi: 10.1016/j.gexplo.2019.02.005
    [7]
    朱业安, 黄德超, 廖晓峰, 等. 铀矿区污染土壤上植物资源调研. 江西科学, 2012, 30(5):620 doi: 10.3969/j.issn.1001-3679.2012.05.018

    Zhu Y A, Huang D C, Liao X F, et al. A survey of plant resources in the contaminated soil of uranium mine. Jiangxi Sci, 2012, 30(5): 620 doi: 10.3969/j.issn.1001-3679.2012.05.018
    [8]
    丰楠. 草本植物对土壤重金属的富集研究. 环境科学与管理, 2015, 40(7):138 doi: 10.3969/j.issn.1673-1212.2015.07.037

    Feng N. Enrichment of herbaceous plants on soil heavy metal. Environ Sci Manage, 2015, 40(7): 138 doi: 10.3969/j.issn.1673-1212.2015.07.037
    [9]
    Kersten G, Majestic B, Quigley M. Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf, 2017, 137: 225 doi: 10.1016/j.ecoenv.2016.12.001
    [10]
    Pilipovic A, Zalesny Jr. R S, Roncevic S, et al. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J Environ Manage, 2019, 239: 352 doi: 10.1016/j.jenvman.2019.03.072
    [11]
    曾鹏, 郭朝晖, 肖细元, 等. 构树修复对重金属污染土壤环境质量的影响. 中国环境科学, 2018, 38(7):2639 doi: 10.3969/j.issn.1000-6923.2018.07.033

    Zeng P, Guo Z H, Xiao X Y, et al. Effect of phytoremediation with Broussonetia papyrifera on the biological quality in soil contaminated with heavy metals. China Environ Sci, 2018, 38(7): 2639 doi: 10.3969/j.issn.1000-6923.2018.07.033
    [12]
    刘威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis)‒‒一种新的镉超富集植物. 科学通报, 2003, 48(19):2046 doi: 10.3321/j.issn:0023-074X.2003.19.009

    Liu W, Shu W S, Lan C Y. Viola baoshanensis−A new hyperaccumulator for cadmium. Chin Sci Bull, 2003, 48(19): 2046 doi: 10.3321/j.issn:0023-074X.2003.19.009
    [13]
    谢景千, 雷梅, 陈同斌, 等. 蜈蚣草对污染土壤中As、Pb、Zn、Cu的原位去除效果. 环境科学学报, 2010, 30(1):165

    Xie J Q, Lei M, Chen T B, et al. Phytoremediation of soil co-contaminated with arsenic, lead, zinc and copper using Pteris vittata L.: a field study. Acta Sci Circum, 2010, 30(1): 165
    [14]
    Chandrasekhar C, Ray J G. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf, 2019, 171: 26 doi: 10.1016/j.ecoenv.2018.12.058
    [15]
    莫福孝. 三峡库区消落带土壤重金属污染特征及植物修复技术研究[学位论文]. 重庆: 重庆交通大学, 2014

    Mo F X. Study on the Feature of Heavy Metal Pollution and Phytoremediation in Three Gorges Reservoir[Dissertation]. Chongqing: Chongqing Jiaotong University, 2014
    [16]
    高凤杰, 鞠铁男, 吴啸, 等. 黑土耕作层土壤pH空间变异及自相关分析. 土壤, 2018, 50(3):566

    Gao F J, Ju T N, Wu X, et al. Spatial variability and autocorrelation analysis of pH in a mollisol tillage area of Northeast China. Soils, 2018, 50(3): 566
    [17]
    Zhu H, Bing H J, Wu Y H, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation. Sci Total Environ, 2019, 664: 79 doi: 10.1016/j.scitotenv.2019.02.016
    [18]
    安志装, 陈同斌, 雷梅, 等. 蜈蚣草耐铅、铜、锌毒性和修复能力的研究. 生态学报, 2003, 23(12):2594 doi: 10.3321/j.issn:1000-0933.2003.12.013

    An Z Z, Chen T B, Lei M, et al. Tolerance of Pteris vittata L. to Pb, Cu and Zn. Acta Ecol Sin, 2003, 23(12): 2594 doi: 10.3321/j.issn:1000-0933.2003.12.013
  • Cited by

    Periodical cited type(11)

    1. 盛溢,薛玮真,应迪文,吴骏,李晔,史沛丽,赵玲. 场地土壤镉污染排放清单与溯源——以铜冶炼厂为例. 中国环境科学. 2024(08): 4462-4474 .
    2. 徐勇,李得路,张晓团,杨志东,王少飞,贺前阳. 钒矿区土壤地球化学特征及重金属生态风险评价. 矿产勘查. 2023(08): 1504-1516 .
    3. 邓家逸,余东,吴昊,杜军艳,蒲生彦. 广西某铜冶炼场地土壤污染特征及源解析. 环境科学学报. 2023(11): 290-299 .
    4. 冯嘉仪,阮可瑾,苏思宁,张学平,吴道铭,万利鑫,曾曙才. 构树的污泥适应性及养分和重金属吸收累积特征. 应用生态学报. 2022(06): 1629-1638 .
    5. 董颖博,赵钰,林海,崇诗佳. 胶质芽孢杆菌淋洗石煤提钒尾渣中重金属研究. 中南大学学报(自然科学版). 2021(06): 1992-2001 .
    6. 张昊. 矿山土地污染现状及修复技术进展. 华北自然资源. 2021(05): 97-98+101 .
    7. 彭浩,伍锡斌,郑雄攀,郭静,黄辉胜,李兵. 生物炭还原五价钒的行为研究. 钢铁钒钛. 2021(04): 12-17 .
    8. 张国伟,张永波,吴艾静,李佳敏,徐树媛. 湿地植物对煤矿老窑水污染土壤中重金属的富集能力研究. 环境污染与防治. 2021(10): 1244-1248 .
    9. 江炯. 不同营林管理模式对复垦土壤养分和重金属含量的影响. 南方农机. 2021(20): 45-47 .
    10. 贾伟涛,吕素莲,林康祺,马茂华,吴胜军,汤叶涛,仇荣亮,李银心. 高生物量经济植物修复重金属污染土壤研究进展. 生物工程学报. 2020(03): 416-425 .
    11. 谌伟艳,黄晟,张杰,焦海洋,张雪平,许泽英. 土壤中氯代有机物污染生物修复技术. 中国金属通报. 2020(05): 210-211 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (1946) PDF downloads (70) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return