AN Hang-hang, BAO Yan-ping, WANG Min, ZHAO Li-hua, WANG Da-zhi, LIU Rong-quan, LI Peng. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms[J]. Chinese Journal of Engineering, 2017, 39(7): 996-1007. DOI: 10.13374/j.issn2095-9389.2017.07.004
Citation: AN Hang-hang, BAO Yan-ping, WANG Min, ZHAO Li-hua, WANG Da-zhi, LIU Rong-quan, LI Peng. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms[J]. Chinese Journal of Engineering, 2017, 39(7): 996-1007. DOI: 10.13374/j.issn2095-9389.2017.07.004

Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms

More Information
  • Received Date: October 04, 2016
  • This study established a two-dimensional mathematical model of solidification and heat transfer for a bloom with a 310 mm×360 mm cross-section using ANSYS software, which was verified by nail-shooting experiments in the narrow side of the bloom and surface temperature testing. The effect of the casting process parameters, such as superheat, casting speed, and secondary cooling intensity, on the solid fraction in the strand centerline and the solidified shell was investigated. Moreover, the optimum casting speed and the optimum solid fraction in the core of the partially solidified strand throughthe soft reduction zone were determined by the model considering the hot ductility of the high-carbon wear-resistant ball steel BU. Plant trials of BU with different casting speeds were performed to validate the theoretical model and analyze the effect of the casting speed on the segregation and shrinkage cavity of BU on a 310 mm×360 mm bloom caster equipped with final electromagnetic stirring (F-EMS) combined with mechanical soft reduction (reduction amount with 17 mm). The results show that the inner defects (e. g., center segregation, V-segregation, and shrinkage cavity) significantly improve when the casting speed is adjusted to meet the required soft reduction zone as a matter of priority; otherwise, the casting speed is only adjusted to preferentially satisfy the required F-EMS stirring region. The inner quality does not show any obvious improvement. Except for the internal cracks and the negative center segregation caused by the improper distribution of the reduction amount, the inner defects (e. g., macro segregation and shrinkage cavity) significantly improve with a casting speed of 0.52 m·min-1 and a solid fraction in the strand centerline ranging from 0.30 and 0.75 in the soft reduction zone.
  • [1]
    El-Bealy M O. Macrosegregation quality criteria and mechanical soft reduction for central quality problems in continuous casting of steel. Mater Sci Appl, 2014, 5(10):724
    [2]
    Raihle C M,Fredriksson H. On the formation of pipes and centerline segregates in continuously cast billets. Metall Mater Trans B, 1994, 25(1):123
    [3]
    Li W S, Shen H F, Liu B C. Numerical simulation of macro segregation in steel ingots using a two-phase model. Int J Miner Metall Mater, 2012, 19(9):787
    [4]
    Oh K S, Chang Y W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int, 1995, 35(7):866
    [5]
    Domitner J, Wu M H, Kharicha A, et al. Modeling the effects of strand surface bulging and mechanical soft reduction on the macrosegregation formation in steel continuous casting. Metall Mater Trans A, 2014, 45(3):1415
    [6]
    Bode O, Schwerdtfeger K, Geck H G, et al. Influence of casting parameters on void volume and center segregation in continuously cast 100Cr6 blooms. Ironmaking Steelmaking, 2008, 35(2):137
    [12]
    Zeng J, Chen W Q, Wang G S, et al. Development and application of an off-line soft reduction model during continuous casting of high-carbon rectangular billet. Metall Res Technol, 2015, 4(112):403
    [14]
    Hori S, Suzuki M, Unigame Y. Effect of carbon on the low temperature brittleness of iron. J Jpn Inst Metal, 1980, 44(2):138
    [15]
    Kawawa T, Sato H, Miyahara S, et al. Determination of solidifying shell thickness of continuously cast slab by rivet pin shooting. Tetsu-to-Hagane, 1974, 60(2):206
    [16]
    Sun H, Li L, Cheng X, et al. Reduction in macrosegregation on 380 mm×490 mm bloom caster equipped combination M + F-EMS by optimizing casting speed. Ironmaking Steelmaking, 2015, 42(6):439
    [17]
    Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7):1755
    [18]
    Wu M H, Domitner J, Ludwig A. Using a two-phase columnar solidification model to study the principle of mechanical soft reduction in slab casting. Metall Mater Trans A, 2012, 43(3):945
    [20]
    Thome R, Harste K. Principles of billet soft-reduction and consequences for continuous casting. ISIJ Int, 2006, 40(12):1839
    [21]
    Hu P, Zhang H, Zhang X Z, et al. Application of a corner chamfer to steel billets to reduce risk of internal cracking during casting with soft reduction. ISIJ Int, 2014, 54(10):2283
    [22]
    Zeng J, Chen W Q, Wang Q X, et al. Improving inner quality in continuous casting rectangular billets:comparison between mechanical soft reduction and final electromagnetic stirring. Trans Indian Inst Met, 2016, 69(8):1623
  • Cited by

    Periodical cited type(20)

    1. 王海达,兰鹏,陈列,王海杰,范世强,艾宏洲. 高碳耐磨钢大方坯多机架轻重混合连续压下技术. 钢铁研究学报. 2024(01): 55-65 .
    2. 夏帅康,王璞,汤群伟,李伟涛,扈凯,张家泉. 轴承钢大方坯凝固末端特性与中心质量控制. 钢铁. 2024(02): 99-110 .
    3. 魏亚芳,邓安元,王恩刚. 电磁搅拌改善连铸钢坯宏观偏析的研究现状和发展. 特种铸造及有色合金. 2024(04): 451-456 .
    4. 年义,李家乐,张立强. 连铸智能化发展现状与展望. 连铸. 2024(03): 2-11 .
    5. 郭岩,尹延斌,张炯明,刘强. 70~#钢热轧盘条拉拔断裂的原因分析. 江西冶金. 2024(03): 199-203 .
    6. 张海波,王敏,高宇波,张孟昀,姚骋,包燕平. 铸坯及轧材中元素偏析行为分析. 冶金分析. 2023(09): 21-27 .
    7. 饶金元,张孟昀,陈君,赵立华,包燕平. 轻压下改善42CrMo钢300 mm×400 mm大方坯内部质量的工艺实践. 特殊钢. 2022(01): 39-43 .
    8. 陈禹,宋春林,贾宁波,王晓良,刘军周,张孟昀. 电磁搅拌对石油管用圆坯内部质量的改善. 中国冶金. 2022(08): 98-104 .
    9. 安航航,张国锋,武佳毅,张龙. GCr15轴承钢大方坯凝固过程微观偏析模型及应用研究. 特殊钢. 2021(03): 16-20 .
    10. 张越,吕泽安,马建祎,钟骞,王占忠,彭峰. 轻压下和拉速对42CrMo钢410mm×530mm铸坯轧成Φ195mm材的低倍和中心C偏析的影响. 特殊钢. 2021(04): 35-38 .
    11. 王璞,铁占鹏,肖红,张壮,唐海燕,苗红生,张家泉. 连铸控流模式对大方坯及棒材组织结构与宏观偏析影响. 工程科学学报. 2021(08): 1081-1089 . 本站查看
    12. 王亚栋,张立峰,张健,周扬,刘庭耀,任英. 真空自耗熔炼过程宏观偏析的数值模拟. 钢铁研究学报. 2021(08): 718-725 .
    13. 祁猛,李亮,铁占鹏,王璞,苗红生,张家泉. 轻压下对GCr15轴承钢大方坯内部质量的影响. 中国冶金. 2020(09): 67-74 .
    14. 李红光. 360 mm×450 mm大方坯电磁搅拌强度对齿轮钢碳元素均质性的影响与控制研究. 钢铁钒钛. 2019(01): 112-117 .
    15. 李少翔,王璞,兰鹏,刘华松,刘麒麟,李树贵,张家泉. 圆坯凝固末端电磁搅拌作用下的流动与传热行为. 工程科学学报. 2019(06): 748-756 . 本站查看
    16. 张振学,张慧,王明林,李鹏飞,王学兵. GCr15轴承钢大方坯连铸过程凝固传热数值模拟. 铸造技术. 2019(08): 763-767 .
    17. 陈俊儒,张慧,王明林,俞占扬. 特殊钢连铸大方坯内部质量问题研究现状. 铸造技术. 2019(08): 874-878 .
    18. 闫卫兵,郭旭东. 宣钢小方坯连铸应用轻压下技术试验. 河北冶金. 2018(02): 5-9 .
    19. 张贯旭,杨树峰,李京社,李茂印. 方坯轴承钢连铸过程中凝固行为. 中国冶金. 2018(S1): 17-21 .
    20. 王向红,张建斌,屠兴圹,张正林. 轻压下对220mm×260mm轴承钢大方坯内部质量的改善. 炼钢. 2018(06): 34-39 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1620) PDF downloads (70) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return