

Fe₃O₄与ZIF-9复合催化剂的制备及其快速降解亚甲基蓝的研究

何浩波 李海旭 姜天男 徐良 汪龙 王嘉宁 彭培益 高紫赤 覃宇鑫 刘晓光 薛文东

Preparation of composite catalyst Fe₃O₄/ZIF-9 and its rapid degradation rates toward methylene blue

HE Haobo, LI Haixu, JIANG Tiannan, XU Liang, WANG Long, WANG Jianing, PENG Peiyi, GAO Zichi, QIN Yuxin, LIU Xiaoguang, XUE Wendong

引用本文:

何浩波, 李海旭, 姜天男, 徐良, 汪龙, 王嘉宁, 彭培益, 高紫赤, 覃宇鑫, 刘晓光, 薛文东. Fe₃O₄与ZIF-9复合催化剂的制备及 其快速降解亚甲基蓝的研究[J]. 工程科学学报, 2024, 46(2): 268–278. doi: 10.13374/j.issn2095–9389.2023.05.11.001 HE Haobo, LI Haixu, JIANG Tiannan, XU Liang, WANG Long, WANG Jianing, PENG Peiyi, GAO Zichi, QIN Yuxin, LIU Xiaoguang, XUE Wendong. Preparation of composite catalyst Fe₃O₄/ZIF-9 and its rapid degradation rates toward methylene blue[J]. *Chinese Journal of Engineering*, 2024, 46(2): 268–278. doi: 10.13374/j.issn2095–9389.2023.05.11.001

在线阅读 View online: https://doi.org/10.13374/j.issn2095-9389.2023.05.11.001

您可能感兴趣的其他文章

Articles you may be interested in

金属有机骨架与相变芯材相互作用的分子动力学

Molecular dynamics study on the interaction between metal-organic frameworks and phase change core materials 工程科学学报. 2020, 42(1): 99 https://doi.org/10.13374/j.issn2095-9389.2019.07.26.001

Co掺杂对RGO/Fe₃O₄复合材料组织结构和吸波性能的影响

Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe_3O_4 composites

工程科学学报. 2018, 40(7): 849 https://doi.org/10.13374/j.issn2095-9389.2018.07.011

金属有机骨架(MOFs)/纤维材料用于电阻式气体传感器的研究进展

Research progress on MOFs/fiber materials for resistive gas sensors

工程科学学报. 2020, 42(9): 1096 https://doi.org/10.13374/j.issn2095-9389.2019.12.16.006

Cu掺杂对硫化镍精矿制备高效异相类Fenton催化剂(Ni, Mg, Cu)Fe₂O₄的影响

Copper doping effect on the preparation of efficient heterogeneous Fenton–like catalyst (Ni, Mg, Cu) Fe_2O_4 from nickel sulfide concentrate

工程科学学报. 2021, 43(7): 935 https://doi.org/10.13374/j.issn2095-9389.2020.06.18.002

核壳结构Fe3O4@C粒子在UV-Fenton氧化去除VOCs过程中的吸附-催化作用

Fabrication of Fe₃O₄@C core-shell particles and its application in UV-Fenton oxidize removal of VOCs

工程科学学报. 2017, 39(8): 1166 https://doi.org/10.13374/j.issn2095-9389.2017.08.005

杨梅状Fe₃O₄@SnO₂核壳材料制备及吸波性能

Fabrication and microwave absorption properties of myrica rubra-like Fe₃O₄@SnO₂ core-shell material

工程科学学报. 2020, 42(5): 635 https://doi.org/10.13374/j.issn2095-9389.2019.05.05.001

Fe₃O₄与 ZIF-9 复合催化剂的制备及其快速降解亚甲基 蓝的研究

何浩波,李海旭,姜天男,徐 良,汪 龙,王嘉宁,彭培益,高紫赤,覃宇鑫, 刘晓光[∞],薛文东

北京科技大学材料科学与工程学院,北京 100083 ⊠通信作者, E-mail: liuxg@ustb.edu.cn

摘 要 为了提高水中有机染料的降解速率,采用超声和溶剂热法制备 Fe₃O₄/ZIF-9 复合催化剂,该催化剂为立方状的金属有 机骨架 ZIF-9 且表面附着有类球形 Fe₃O₄ 颗粒. Fe₃O₄ 的加入为 ZIF-9 提供了更多的成核位点,同时 Fe₃O₄/钴盐比例的变化也 会影响 ZIF-9 的成核与生长.当 Fe₃O₄/钴盐摩尔比为1:1时,该催化剂在 30 min 内对亚甲基蓝的降解率达到 95.1%,催化反 应 10 min 的伪一阶动力学常数达到 0.101 min⁻¹,在 pH 为 5~9 范围内保持稳定的高催化性能.X 射线光电子能谱(XPS)结果 表明铁和钴位点之间存在电子转移,并且钴和铁的协同作用可以降低钴的还原电位,从而加速钴的价态变化,提升催化速率. 电磁共振实验(EPR)结果显示该催化剂可以活化过一硫酸盐生成单线态氧(¹O₂)、硫酸根自由基(SO₄·)和羟基自由基(·OH), 进一步通过活性因子淬灭实验发现其中单线态氧为主要活性物种.由此可知,Fe₃O₄/ZIF-9 通过铁和钴位点的氧化还原循环催 化 PMS 不断生成¹O₂、·OH 和SO₄⁻,共同将亚甲基蓝分子降解成二氧化碳和水.此外,磁滞回线测试(VSM)结果显示,该复合 材料饱和磁化强度值为 7.6 A·m²·kg⁻¹,表明 Fe₃O₄ 能赋予复合催化剂良好的铁磁性,同时该催化剂循环使用 4 次后仍保持较高的降解率,表明该复合催化剂具有良好的回收性能和重复使用性能.本研究为有机染料等污染物的治理提供了新的技术和 材料支撑.

关键词 金属有机骨架;超声;溶剂热;Fe₃O₄;ZIF-9;高催化速率;磁性可回收 分类号 TQ;O61

Preparation of composite catalyst $Fe_3O_4/ZIF-9$ and its rapid degradation rates toward methylene blue

HE Haobo, LI Haixu, JIANG Tiannan, XU Liang, WANG Long, WANG Jianing, PENG Peiyi, GAO Zichi, QIN Yuxin, LIU Xiaoguang[⊠], XUE Wendong

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 10083, China Corresponding author, E-mail: liuxg@ustb.edu.cn

ABSTRACT To enhance the degradation rate of methylene blue (MB) in water, ultrasonication and solvothermal methods were used to prepare $Fe_3O_4/ZIF-9$ composite catalysts. The morphology of the catalyst revealed the attachment of cubic ZIF-9 particles to spherical-like Fe_3O_4 particles. The particle sizes of these ZIF-9s slightly varied, which might be due to the influence of the increased number of nucleation sites originating from the addition of Fe_3O_4 on the nucleation and growth of ZIF-9s as well as the effects of the variation in Fe_3O_4/Co salt ratio on the nucleation quantity and growth rate of ZIF-9s. Using this catalyst at a Fe_3O_4/Co salt molar ratio of $1 \div 1$,

收稿日期:2023-05-11

基金项目:国家自然科学基金资助项目(51602018);北京市自然科学基金资助项目(2154052);中央高校基本科研业务资助项目(FRF-MP-20-22)

95.1% of the MB was degraded within 30 min. Its pseudo-first-order kinetic constant for a 10-min catalytic reaction reached 0.101 min⁻¹, and it remained stable and had high catalytic performance within the pH range from 5 to 9. X-ray photoelectron spectroscopy results showed that the valence state changes of Fe and Co in $Fe_3O_4/ZIF-9$ after MB degradation, verifying the electron transfer between the Fe and Co sites. Meanwhile, the divalent unsaturated Fe and Co sites in the Fe₃O₄/ZIF-9 structure were likely to synergistically transfer electrons based on the fast degradation kinetics mentioned above. Consequently, compared with the pure ZIF-9, the addition of Fe ions can effectively reduce the reduction potential of Co ions and accelerate the valence state changes of Co ions and the corresponding redox cycle. Furthermore, electron paramagnetic resonance results demonstrated that Fe₃O₄/ZIF-9 can activate peroxymonosulfate to generate singlet oxygen ($^{1}O_{2}$), sulfate radicals(SO₄⁻), and hydroxyl radicals ($^{\cdot}OH$), with $^{1}O_{2}$ being the primary active species, as further confirmed by the free radical quenching test. Hence, such a redox cycle of Fe and Co sites continuously generated ¹O₂, SO₄⁻, and ·OH, which degraded the MB molecules into carbon dioxide and water. Moreover, a saturation magnetization value of 7.6 $A \cdot m^2 \cdot kg^{-1}$ was measured using the vibrating sample magnetometer method, indicating that the Fe_3O_4 imparts good ferromagnetic properties to the composite catalyst, facilitating its collection and recovery after the catalytic reaction. In addition, after four cycles of use, the catalyst maintained its structure and high degradation rate without significant changes, thereby demonstrating excellent reusability. In conclusion, this study systematically explored the influence of the Fe_3O_4/Co salt molar ratio on the structure and catalytic performance of the catalyst, qualitatively analyzed the active species during catalysis, and further elucidated the mechanism by which Fe₃O₄/ZIF-9 improves the catalytic efficiency. This study offers insight into techniques for the organic dye remediation.

KEY WORDS metal-organic frameworks; ultrasonic method; solvothermal method; Fe₃O₄; ZIF-9; high degradation rates; magnetic recovery

我国水资源相对短缺,且水污染问题严重,对 环境造成了不可挽回的伤害.工业生产中排出的 有机染料中含有的多环芳烃、环类化合物化学性 质稳定且通常不可生物降解,是世界公认的严重 污染源^[1]. 目前研究人员通过吸附法^[2]、电化学氧 化法^[3]、高级氧化法^[4]及生物降解法^[5]等方法有效 降解废水中的有机污染物.其中高级氧化技术 (Advanced oxidation processes, AOPs)因反应迅速、 矿化率高、重复性好等优势引起了研究人员广泛关 注. AOPs 通过生成具有强氧化性能的自由基作为 活性物质,将大分子有机物分解并矿化成无毒小 分子物质⁶. 其中基于硫酸根自由基(SO₄·)的 SR-AOPs, SO₄·的氧化还原电位(2.5~3.1V)比传统羟 基自由基(·OH)(2.8 V)高,半衰期也相对更长,且 对芳香化合物的反应选择性更高^[7].该 SO₄·可以 通过催化剂、光解、超声、热活化等途径活化过一 硫酸盐(PMS, HSO₅)和过二硫酸盐(PS, $S_2O_8^{2-}$)获 得.其中,过渡金属非均相类 Fenton 催化剂活化因 操作简便、催化效率高、pH适用范围广和重复利 用性强等特点受到广泛关注[3-4].

研究表明在众多非均相 SR-AOPs 催化剂中, Co 的氧化物催化降解率高^[8], 性能更稳定且制备方法 简单. 其中纳米氧化钴更能充分发挥上述优点, 但 是它在催化过程中仍存在严重的团聚现象, 导致 分散性不够^[9]. 近年来, 研究发现钴基金属有机骨 架(Co-MOFs), 例如 ZIF-9 是一种新型多孔晶体材 料,具有高度分散的不饱和钴活性位点和高的孔 隙率^[10],是优异的非均相 SR-AOPs 催化剂候选材 料.但是该催化剂却面临催化速率较低的挑战^[11], 因此寻找一种提高其催化速率的方法迫在眉睫. 目前解决该问题的主要措施为与具有多元功能的 催化活性材料(如金属类、有机类及功能类材料 等)复合,形成与 ZIF-9 的协同作用^[12].研究人员发 现 Fe₃O₄具有类 Fenton 催化活性^[13],可通过 Fe 位 点与 PMS 的电子转移生成自由基, Fe³⁺/Fe²⁺的氧化 还原电位差(*E*₀=0.77 V)小于 Co³⁺/Co²⁺(*E*₀=1.81 V), 可以产生协同作用,加快金属位点的变价循环提 升催化速率.同时, Fe₃O₄具有良好的磁学性能,能 够同时赋予该复合催化剂良好的回收性能.

因此,本文通过超声辅助法制备 Fe₃O₄/ZIF-9 复合催化剂,以亚甲基蓝(MB)为目标污染物,探究 Fe₃O₄/钴盐摩尔比和 pH 对催化剂结构及催化速率 的影响,并通过电子顺磁共振波谱(EPR)对主要催 化活性因子进行了定性分析,阐明了 Fe₃O₄/ZIF-9 活化 PMS 的机理并分析了其催化速率提高的机制.

Fe₃O₄/ZIF-9 的制备和表征

1.1 原料

本文所用主要原料及其质量分数主要有乙二 醇(98%), N,N-二甲基甲酰胺(99.5%), 苯并咪唑 (98.5%), 乙酸钴四水合物(99.5%), 二氢二胺(AR), 三氯化铁(AR), 氨水(25%~28%), 亚甲基蓝(AR), 过氧硫酸氢钾(42%~46% HSO₅),正庚烷(98%), 氢氧化钠(AR),盐酸(AR)等.

1.2 Fe₃O₄/ZIF-9 的制备和表征方法

1.2.1 制备

采用溶剂热法制备 $Fe_3O_4^{[14]}$.采用超声辅助法 合成 $Fe_3O_4/ZIF-9$,将 0.05 g Fe_3O_4 分散在 10 mL 甲 醇中并加入 0.1025 g 苯并咪唑作为 A 液,在 10 mL N,N-二甲基甲酰胺(DMF)中溶解 0.054 g 乙酸钴四 水合物作为 B 液.将 A 液超声 0.5 h 后快速倒入 B 液中,滴加 0.5 mL 氨水,再经 0.5 h 超声后用高速 离心机(KH19A)离心,收集固体产物.将所得产物 用乙醇洗涤 3 次,经 60 ℃ 条件下真空干燥 12 h,可 制得黑紫色固体产物 $Fe_3O_4/ZIF-9$,将其记为 $Fe_3O_4/ZIF-9-1$.

为探究超声合成对于 ZIF-9 结晶的影响, 在制备过程中, 不加入 Fe₃O₄ 但其他条件保持不变制备 ZIF-9. 同时为探究 Fe₃O₄ 掺杂量对催化剂的影响, 保持钴盐与配体比例为 1:4, 其他条件不变, 调整 Fe₃O₄/结盐摩尔比为 1:0.5、1:2、1:3 的 Fe₃O₄/ZIF-9. 将制得产物分别记为 Fe₃O₄/ZIF-9-0.5、Fe₃O₄/ZIF-9-2、Fe₃O₄/ZIF-9-3.

1.2.2 表征

 $Fe_3O_4/ZIF-9 形貌及结构表征:通过冷场发射$ 扫描电子显微镜(型号 Regulus8100,日立)获得扫描电镜(SEM)照片,利用能量色散X射线能谱(EDX 型号 OXFORD ULTIM MAX40)表征产物的物相组成;使用多晶X射线衍射仪(型号 powderX-ray diffractometer, PXRD,Ultima VI)确定复合材 $料的晶体结构,扫描速率为<math>5^{\circ}$ ~80°;通过 VSM(磁滞回线测试)测量样品的磁 化强度,仪器型号为 MPMS3, Quantum Design, USA. 测试温度为常温,磁场强度为±7 T, AC 频率范围 为 0.1~1 Hz, AC 磁场振幅为 8~800 A·m⁻¹;通过 X 射线光电子能谱(XPS 型号为 ESCALAB 250Xi) 分析样品表面元素的组成和化学态,X 射线波长 为 532 nm,采用 XPSPEAK41 软件进行拟合分析.

1.2.3 催化降解性能

以质量浓度为 50 mg·L⁻¹ 的 MB 为污染物模型 进行催化降解实验.将 5 mg 催化剂(50 mg·L⁻¹)加 入到 100 mL MB 溶液中搅拌至分散均匀,持续搅 拌并快速加入 15 mg PMS(150 mg·L⁻¹),在 25±2 ℃ 的 250 mL 玻璃瓶中进行降解反应,在预设时间处 利用针式注射器提取 3.0 mL 待测液,经 0.22 µm 有 机滤膜过滤后立即用等体积的甲醇淬灭,用紫外– 可见光光度计检测滤液在 662 nm 处的吸光度, 得出待测液 MB浓度.为研究 pH 值对催化体系的影响,设置 pH 变量组,在加入催化剂前预先用 0.1 mol·L⁻¹的 NaOH 或 HCl 溶液调节溶液 pH 至预 定值.

1.2.4 活性因子测试

通过电磁共振实验(Elecron paramagnetic resonance, EPR)对 Fe₃O₄/ZIF-9-1+PMS体系中的活性物 种进行定性表征,以 5,5-二甲基-1-吡咯啉-N-氧化 物(DMPO)或 2,2,6,6-四甲基哌啶(TEMP)作为捕 获剂,催化反应 5 min 后取出 1 mL 溶液,经过滤 后快速加入 50 mmol·L⁻¹的 DMPO 或 TEMP,通过 Bruker A300-10/12型电子顺磁共振仪进行分析,与 仅加入 PMS 及催化剂的体系进行对比,明确催化 活性因子种类.由于金属位点的价态是影响催化 活性的重要因素,通过 XPS 表征考察反应前后催 化剂中的 Co 和 Fe 价态变化,以研究 Fe₃O₄/ZIF-9-1 活化 PMS 降解 MB 的可能机理.

1.2.5 循环性能评估

通过循环试验测试 Fe₃O₄/ZIF-9-1 的重复使用 性能.测试循环周期为四次.分别测出四次催化降 解后亚甲基蓝的降解率并对循环使用前后的 Fe₃O₄/ ZIF-9-1 进行 XRD 和 SEM 表征.

2 结果与讨论

2.1 Fe₃O₄/ZIF-9 的显微形貌

XRD 测试得到图 1, 可观察到超声合成的 ZIF-9 在 2θ =7.7°,15.5°,16.3°和 19.6°处出现强衍射峰, 分 別 对 应 ZIF-9 模 拟 图 谱 (CCDC 号 :1031565)的 ($\bar{1}20$)、($\bar{2}40$)、($\bar{4}41$)和($\bar{4}32$)晶面,证明通过超声 辅助能成功合成高结晶度的 ZIF-9 材料, Fe₃O₄/ ZIF-9-1 的特征峰除了出现了 ZIF-9 的特征峰, 还 在 2θ =30.1°,35.4°,43.1°,56.9°和 62.5°处出现衍射峰, 分 别 对 应 Fe₃O₄(JCPDS:19-0629)的(220),(311), (400),(511)和(440)晶面,证实了样品中存在 Fe₃O₄.

能量色散 X 射线能谱 (EDX) 结果(图 2)显示 Fe₃O₄/ZIF-9-1 中各元素的空间分布.在 Fe₃O₄/ZIF-9-1 的扫描电镜照片(图 2(a))类球状颗粒位置发 现 O 和 Fe 元素分布相对富集,而其背后的立方体 所对应的位置 C、N、Co 元素分布比较均匀(图 2(b), (c), (f)).结合图 1 和图 2,可推断出类球状颗粒可 能是 Fe₃O₄,立方体可能是 ZIF-9,且 Fe₃O₄ 颗粒附 着在 ZIF-9 表面.

图 2 Fe₃O₄/ZIF-9-1 EDX 面扫描电镜图 (a) 及各元素分布图 (b)~(f) Fig.2 (a) SEM and (b)–(f) element maps of C, N, O, Fe, and Co of Fe₃O₄/ZIF-9-1

图 3 为Fe₃O₄、ZIF-9、Fe₃O₄/ZIF-9-*X*(*X*=0.5,1,2,3) 扫描电镜图,由图 3(a)可观察到制得的 Fe₃O₄ 为类 球形颗粒,粒径均匀(~100 nm),由图 3(b)可知超 声合成的纯 ZIF-9 呈立方状颗粒,上述微观结构均 与 EDX(图 2)的结果一致.ZIF-9 的尺寸在 200~ 300 nm 范围内,表明超声辅助形核细化了 ZIF-9 晶粒,该结果与文献中对于超声合成 ZIF 类金属 有机骨架材料的影响一致^[15-16].当加入 Fe₃O₄后, Fe₃O₄/ZIF-9-*X*(*X*=0.5, 1, 2, 3)中均存在立方状颗粒 以及附着在其表面的类球形颗粒.与纯的 ZIF-9(图 3(b))相比, Fe₃O₄/ZIF-9-*X*(*X*=0.5, 1, 2, 3)中的

图 3 (a) Fe₃O₄ 扫描电镜图; (b) ZIF-9 扫描电镜图; (c)~(f) Fe₃O₄/ ZIF-9-X(X=0.5,1,2,3) 扫描电镜图

Fig.3 (a) SEM image of Fe_3O_4 ; (b) SEM image of ZIF-9; (c)–(f) SEM images of $Fe_3O_4/ZIF-9-X$ (X = 0.5, 1, 2, and 3)

ZIF-9尺寸(图 3(c)~(f))均发生了改变,可能是因为Fe₃O₄为ZIF-9提供了更多的成核位点,从而影响了它的成核和长大过程^[17].同时,当Fe₃O₄/钴盐的摩尔比从1:0.5变化到1:3时,ZIF-9的尺寸也发生了一些变化,推测钴盐浓度的改变影响了ZIF-9合成过程中的成核数量和生长速率,从而形成晶体尺寸不同的ZIF-9颗粒^[18-19].

2.2 催化降解实验

通过催化降解实验考察不同组分催化性能, 图 4(a)为不同催化剂的催化降解曲线图.单独加 入 PMS 时,对 MB 在 30 min 内的降解率极低,仅 为 6.7%,表明 PMS 自分解降解能力很弱.当 PMS 体 系中加入催化剂,催化剂分别为 Fe_3O_4 、ZIF-9、 Fe_3O_4 / ZIF-9-1 时,对 MB 降解率分别为 12.1%,97.2% 和 95.1%,表明 Fe_3O_4 /ZIF-9-1 能够保持 ZIF-9 高的催 化降解率.值得注意的是,在 5 和 10 min 节点, Fe_3O_4 / ZIF-9-1 的 MB 降解率分别是纯 ZIF-9 的 2.4 倍和 1.2 倍,是 Fe_3O_4 的 121 倍和 22 倍,这表明在催化 反应初期 Fe_3O_4 /ZIF-9-1 的催化更迅速.对各样品 降解过程进行动力学方程计算,采用伪一阶方程 对催化曲线中的实验数据进行拟合,图 4(b)为各 样品催化过程 $ln(C_0/C_1)$ —时间曲线,经拟合后直线 的斜率为 K 值,如式 (1) 所示:

$$\ln \frac{C_0}{C_t} = Kt \tag{1}$$

式中: t 为时间, min; C_0 为初始的 MB 含量, mg·g⁻¹; C_t 为时间 t 处的 MB 含量, mg·g⁻¹; K 为伪一阶反应 速率常数, min⁻¹.

结果符合准一阶动力学方程,对前 10 分钟催 化降解数据进行伪一阶动力学常数计算可得 PMS、Fe₃O₄、ZIF-9、Fe₃O₄/ZIF-9-1的动力学常数分 别为 0.003、0.003¹、0.079 和 0.101 min⁻¹ 表明 Fe₃O₄/ ZIF-9-1 加入后能够更快地活化 PMS,因此在催化 前 10 分钟表现出更高的催化速率.

图 5(a)为 Fe₃O₄/ZIF-9-X的催化曲线图.以合成 Fe₃O₄/ZIF-9 中 Fe₃O₄和钴盐的摩尔比作为变量的催化降解实验中,加入 Fe₃O₄/ZIF-9-X(X=0.5, 1, 2, 3)对 MB的降解率分别为 92.4%, 95.1%, 96.4%和 96.6%,可知,随钴盐摩尔比例增加, PMS 体系对 MB 的降解率有轻微提升,整体降解性能趋于一致.Fe₃O₄/ZIF-9-X(X=0.5,1,2,3)的伪一阶动力学拟合结果如图 5(b)所示 Fe₃O₄/ZIF-9-X(X=0.5, 1, 2, 3)的 K 值分别为 0.102 min⁻¹、0.101 min⁻¹、0.131 min⁻¹

和 0.131 min⁻¹,说明增大合成中 Fe₃O₄/钴盐比例, 对 Fe₃O₄/ZIF-9 的催化速率有一定提升,但继续追 加盐浓度对催化速率提升有限.这可能与 Fe₃O₄/ ZIF-9-X(X=0.5,1,2,3)的尺寸变化(图 3)相关^[20].考 虑到增大钴盐比例后所得产物降解率提升不明 显,综合考虑降解速率及降解率,为节约生产成 本,最佳 Fe₃O₄/钴盐摩尔比为1:1,本文之后的研 究均以 ZIF-9/Fe₃O₄-1 作为研究对象.

催化降解实验中,以 pH 作为实验变量,保持 其他条件不变.各 pH 条件下, Fe₃O₄/ZIF-9-1在 PMS 体系中对 MB 的催化降解曲线(图 6(a))中, Fe₃O₄/ ZIF-9-1在 5~9的 pH 范围内对 MB 保持较高催化 降解性能,对 MB 降解率均为 96%,其中 pH 为 9时 平均催化速度最快,10 min 动力学常数为 0.183 min⁻¹. 当 pH 为 3 时,催化降解过程受到明显抑制,对 MB 降解率仅为 79.4%.考虑到 PMS 在的 pK₂ 约为 9.4, 可以归因于 PMS 在较低 pH 值下存在形式发生变 化, HSO₅结合 H⁺生成 H₂SO₅,一定程度抑制了

图 5 (a) Fe₃O₄/ZIF-9-*X*(*X* =0.5,1,2,3)的催化曲线图; (b) Fe₃O₄/ZIF-9-*X*(*X* =0.5,1,2,3)的伪一阶动力学拟合曲线(催化剂量: 50 mg·L⁻¹; MB 质量浓度: 50 mg·L⁻¹; PMS 量: 150 mg·L⁻¹; 初始 pH: 5.35±0.05; 温度: 25 ℃)

Fig.5 (a) Catalytic curves of Fe₃O₄/ZIF-9-X (X =0.5,1,2,3); (b) corresponding kinetic linear fitting for Fe₃O₄/ZIF-9-X(X =0.5,1,2,3) (catalyst concentration: 50 mg·L⁻¹; MB concentration: 50 mg·L⁻¹; PMS concentration: 150 mg·L⁻¹; pH: 5.35 ± 0.05 ; temperature: 25 °C)

图 6 (a) 不同 pH下 Fe₃O₄/ZIF-9-1 的催化曲线图; (b) pH 组伪一阶动力学拟合图(催化剂量: 50 mg·L⁻¹L; MB 质量浓度: 50 mg·L⁻¹; PMS 量: 150 mg·L⁻¹;初始 pH: 5.35±0.05; 温度: 25 ℃)

Fig.6 (a) Catalytic curves of Fe₃O₄/ZIF-9-1 at different pH values; (b) corresponding kinetic linear fitting for Fe₃O₄/ZIF-9-1 at different pH values (catalyst concentration: 50 mg·L⁻¹; MB concentration: 50 mg·L¹; pH: 5.35 ± 0.05 ; temperature: 25 °C)

催化速率,与该条件下较低的动力学常数对应 (0.05 min⁻¹).在 pH为11时,降解率较低,原因可 能是 PMS 可被碱催化,一方面在强碱条件下大量 自分解迅速产生·OH和 SO₄·降解 MB,造成初期 降解率陡降的现象;另一方面较高 pH下初期产 生 SO₄·会被消耗生成氧化能力更弱的·OH, PMS 会以二价阴离子形式(SO₅⁻⁻)存在逐步被碱氧化, 从而抑制活性物种的生成(式(2)~式(5)).同时, 图 6(b)显示 pH在 5~11范围内, 10 min 动力学常 数无明显变化,在 pH为3时, 10 min 动力学常数 显著下降,总结上述结果说明 Fe₃O₄/ZIF-9-1 在较 宽 pH 范围内具有高效催化性能.

$$SO_4^- \cdot + OH^- \rightarrow SO_4^{2-} + \cdot OH$$
 (2)

 $HSO_{5}^{-} + 2H_{2}O \rightarrow H^{+} + SO_{4}^{2-} + 2 \cdot OH$ (3)

 $\mathrm{HSO}_5^- \to \mathrm{SO}_5^{2-} + \mathrm{OH}^+ \tag{4}$

$$HSO_{5}^{-} + 2OH^{-} \rightarrow 2SO_{4}^{2-} + H_{2}O + O_{2}$$
 (5)

催化性能实验表明, Fe₃O₄/ZIF-9-1 具有良好的 催化性能, 对 MB 降解率为 95.1%, 高于纯金属掺 杂 (Cu,Zn)Fe₂O₄ 对罗丹明 B 的降解率(90%)^[21]. 比 球心型 ZIF-8@TiO₂ 高 5.1%^[22](球心型 ZIF-8@TiO₂ 复合材料对初始质量浓度为 10 mg·L⁻¹的 MB 和 RhB 溶液在光照 40 min 后光降解率为 90.0%), 且 其 10 min 内催化降解 MB 伪一阶动力学常数为 0.101 min⁻¹, 是 10%TiO₂@ZIF-8 复合材料的 8.78 倍 (10%TiO₂@ZIF-8 复合材料伪一阶动力学常数为 0.0115 min⁻¹)^[23], 是 ZC-40 材料的两倍多^[24](ZC-40 材料光催化表观速率常数为 0.0481 min⁻¹), 是 ZIF-8/BP 复合材料的 2.25 倍(ZIF-8/BP 应用于光催 化降解 MB 伪一阶动力学常数为 0.0449 min⁻¹)^[25].

2.3 磁学性能测试

通过 VSM 进一步考察 Fe₃O₄/ZIF-9-1 的磁化 强度.结果如图 7 所示, Fe₃O₄和 Fe₃O₄/ZIF-9-1 均显示出闭合的磁滞回线,饱和磁化强度值分 别为 17.5 A·m²·kg⁻¹和 7.6 A·m²·kg⁻¹,比磁性三嗪 骨架 (CTF/Fe₂O₃,其中 CTFs 为三嗪骨架)复合材 料高 2.3 A·m²·kg⁻¹(Fe₂O₃/CTF 饱和磁化强度为 5.3 A·m²·kg^{-1[26]}),表明复合材料具有良好铁磁性, 易于催化反应后的收集和回收.

2.4 XPS 测试

对 Fe₃O₄/ZIF-9-1 及 ZIF-9 进行 XPS 表征以确 定催化剂表面元素的化学状态变化, XPS 扫描总 谱(图 8(a))显示 Fe₃O₄/ZIF-9-1 图谱中出现了 Fe 2p 特征峰,且O 1s 的峰相对强度增加;如图 8(b) 所示, Fe₃O₄/ZIF-9-1 的 Fe 2p 中出现在 710.7 eV 和 712.9 eV 处的峰分别归属于 Fe²⁺和 Fe³⁺, 原子数百 分数分别为 39.5% 和 60.5%, 表明 Fe₃O₄ 通过化学

图 8 (a) XPS 扫描总谱图; Fe₃O₄/ZIF-9-1 的 (b) Fe 2p 图谱; Fe₃O₄/ZIF-9-1 和 ZIF-9 的 (c) Co 2p 图谱和 (d) N 1s 图谱

Fig.8 (a) Full-survey XPS spectra of ZIF-9 and $Fe_3O_4/ZIF-9-1$; high-resolution profiles of (b) Fe 2p in sample $Fe_3O_4/ZIF-9-1$, high-resolution profiles of (c) Co 2p and (d) N 1s in sample $Fe_3O_4/ZIF-9-1$ and ZIF-9

键的作用与 ZIF-9 连接.两组样品的 Co 2p 图谱如 图 8(c) 所示, Fe₃O₄/ZIF-9-1 和 ZIF-9 均在 781.7 eV 出峰,归属 Co²⁺峰,表明超声合成前后对 Co 化学 态没有影响,均为 Co²⁺.如图 8(d) 所示,在 N 1s 图 谱中, ZIF-9 仅在 399.2 eV 处出峰,归属于配体中 的咪唑 N; 而 Fe₃O₄/ZIF-9-1 中拟合出两种咪唑 N, 分别出峰于 399 eV 和 399.4 eV 处,推测复合材料 中可能存在 Fe—N 的配位情况,导致了咪唑 N 峰 位的偏移.同时,结合 Fe₃O₄ / ZIF - 9-1 材料的 Fe 元 素分布图(图 2), Fe 元素除了在 Fe₃O₄ 颗粒部分较 为密集,在 ZIF-9 立方体范围内仍有少量且均匀的 分布,由此推测 Fe₃O₄/ZIF-9-1 制备过程中,可能存 在少量 Fe₃O₄ 溶于 DMF 中形成 Fe 离子^[27], Fe 离子 与苯并咪唑之间通过 Fe—N 键配位,这与 Chen 的 研究一致^[28].

2.5 活化因子测试及催化机理分析

通过 EPR 实验对 Fe₃O₄/ZIF-9-1+PMS 体系中的活性物种进行定性表征,以 TEMP 作为自由基 捕获剂,在仅加入 PMS 或催化剂时,无法在图谱 (图 9(a))中观察到单线态氧的特征信号,而在 Fe₃O₄/ZIF-9-1+PMS 体系中,TEMP 与单线态氧选 择性加和生成的稳定自旋物种 2,2,6,6-四甲基哌啶 (TEMPO),可观察到 TEMPO-¹O₂ 典型的 1:1:1 特征信号峰(线宽 a_N 为 0.00169 T, g 因子为 2.0054), 证明 Fe₃O₄/ZIF-9-1+PMS 体系中生成了¹O₂. 如图 9(b) 所示,以 DMPO 作为自旋捕获剂时,在 Fe₃O₄/ZIF-9-1 + PMS 体系中观察到强度比为 1:2:2:1 和 1:1:1:1:1:1:1的自由基特征信号,分别归属于 DMPO-·OH(a_N =0.00149 T, a_H =0.00149 T)和 DMPO-SO₄⁻·(a_N =0.00132T, $a_{\beta-H}$ =0.00096T, $a_{\gamma-H2}$ =0.000148T, $a_{\gamma-H2}$ =0.000078 T);而单独加入催化剂或 PMS 时, 无该特征信号,说明 Fe₃O₄/ZIF-9-1 能催化 PMS 分 解生成·OH和 SO₄⁻··综上分析, Fe₃O₄/ZIF-9-1 活化 PMS 的过程中生成了¹O₂、·OH和 SO₄⁻·多种活化 因子,与其他文献 [29–32] 报道的情况一致.

通过自由基淬灭实验进一步探究各活性因子 对催化性能的贡献,详见支持文件,结果表明,PMS 体系中加入 $Fe_3O_4/ZIF-9-1$ 作为催化剂降解 MB 的 过程, 1O_2 、OH 和 SO_4^- 是催化活性物种,其中 1O_2 为主要活性物种.

通过 XPS 考察反应前后催化剂中的 Co、Fe 价态变化. Fe₃O₄/ZIF-9-1 的 Co2p 图谱(图 10(a))中反应前样品仅在 781.7 eV 处出现 Co²⁺的特征峰, 而反应后在 780.8 eV 处还发现了 Co³⁺的特征峰, 比例为 30.77%, 表明催化过程中部分 Co²⁺转变成 Co³⁺. Fe₃O₄/ZIF-9-1 的 Fe2p 图谱(图 10(b))中峰均出现

图 9 (a) 反应 5 min 的 TEMP-EPR 图谱量; (b) 反应 5 min 的 DMPOEPR 图谱量 Fig.9 (a) TEMP-EPR spectra for 5 min; (b) DMPO-EPR spectra for 5 min

图 10 Fe₃O₄/ZIF-9-1 反应前后的 XPS 图谱. (a) Co 2p; (b) Fe 2p Fig.10 High-resolution XPS spectra of the fresh and used Fe₃O₄/ZIF-9-1: (a) Co 2p; (b) Fe 2p

在 710.7 eV 和 712.9 eV 处, 分别归属于 Fe²⁺和 Fe³⁺, 反应前后 Fe²⁺含量从 39.5 % 上升到 48.6 %, 说明在 铁离子和钻离子之间, 存在电子的相互转移.

通过线性伏安法考察了 Fe₃O₄、Fe₃O₄/ZIF-9-1 中金属位点的还原性能.如图 11 所示, Fe₃O₄在 0.12 V 处出现了还原峰, 归因于 Fe³⁺的还原; Fe₃O₄/ZIF-9-1 中还原峰移动到 0.2 V 处, 由 Fe³⁺和 Co³⁺还原引起. Fe₃O₄/ZIF-9-1 的还原峰强度较 Fe₃O₄ 有明显提高, 是 Fe₃O₄ 的 2.5 倍, 进一步证明了 Fe₃O₄/ZIF-9-1 中 Fe 与 Co 位点之间存在协同作用, 加速电子转移, 易于高价态金属位点的还原.结合相关文献进行 分析, Fe³⁺及 Co³⁺获得电子还原成 Fe²⁺及 Co²⁺, 根据 标准还原电位分析(式(6)~式(8))^[33], 在含 Co³⁺体 系中引入 Fe²⁺, 存在双金属的协同作用, 降低了 Co³⁺ 的还原电位, 使得催化剂内部的电子转移速率 加快, 加速了钴离子价态变化, 这就解释了 Fe₃O₄/ ZIF-9-1 材料催化初期速率提升的原因.

$$Fe^{3+} + e^- \to Fe^{2+}, E_0 = 0.77 V$$
 (6)

$$\text{Co}^{3+} + \text{e}^- \to \text{Co}^{2+}, E_0 = 1.81 \text{ V}$$
 (7)

$$\operatorname{Co}^{3+} + \operatorname{Fe}^{2+} \to \operatorname{Co}^{2+} + \operatorname{Fe}^{3+}, E_0 = 1.04 \text{ V}$$
 (8)

降解 MB 的可能机理. 在 PMS 系统中 HSO₅可生 成 H₂O₂(图 12(a), 1), H₂O₂中过氧键断裂后生成 的 HO·与 H₂O₂反应生成 HO₂·并可以进一步分解 为 H⁺及 O₂⁻·(图 12(a), 2~4), O₂⁻·与·OH 或 H⁺反应 生成¹O₂(图 12(a), 5~6),同时 H₂O₂与 OH⁻反应生 成的 HO₂⁻可进一步被 HSO₅⁻氧化生成¹O₂(图 12(a), 7~8), ¹O₂作为主要活性因子参与催化降解反应. 另外,由相关文献可知, Fe₃O₄/ZIF-9-1 表面的 Co²⁺ 可能通过生成 Co-OH⁺、Co-O⁺等中间产物,最终

Fig.12 (a) Reaction pathway to ${}^{1}O_{2}$; (b) transition of the valence states of Fe and Co

失去电子,被氧化为 $Co^{3+[34]}$.同时在 $Fe_3O_4/ZIF-9-1$ 表面可能生成 $Fe^{2+}-(HO)OSO_3^-$,该生成物的内部 发生电子转移,上述过程使得 $Fe^{2+}被氧化成 Fe^{3+[35]}$ (图 12(b),9);之后 Fe^{3+} 和 Co^{3+} 可被 HSO_5^- 还原成 Fe^{2+} 和 Co^{2+} 并生成大量 SO_5^- ·(图 12(b),10)^[33-34,36], 以实现其氧化还原循环过程.同时,溶液中生成的 高氧化电位 SO_4^- ·还可以氧化溶液中 Fe^{2+} 和 Co^{2+} 生成 Fe^{3+} 、 Co^{3+} 和 SO_4^{2-} (图 12(b),11).在此过程中,催 化剂表面的 Fe^{2+} 位点还可还原 Co^{3+} 位点,生成 Co^{2+} 和 Fe^{3+} (式(8)),加速催化剂内金属位点的价态循 环.最终,通过 Fe^{3+}/Fe^{2+} 与 Co^{3+}/Co^{2+} 的氧化还原循 环不断生成 $^{1}O_2$ 、·OH和 SO_4^- ,共同将MB分子氧 化最终矿化成 CO_2 和 $H_2O(式(9))$.

$$^{1}O_{2} + SO_{4}^{-} \cdot + \cdot OH + MB \rightarrow \text{intermediates} \rightarrow CO_{2} + H_{2}O$$
(9)

2.6 循环测试实验

通过循环催化实验进一步考察催化剂回收后的催化活性.如图 13 所示,在四次重复实验中, Fe₃O₄/ZIF-9-1 催化PMS 的MB降解率分别为95.1%, 95.8%, 92.4%和92.3%,虽然随着催化循环次数的 增加其对 MB降解率有轻微下降,但仍保持较高 的降解率.将反应前后 Fe₃O₄/ZIF-9-1 的 XRD 和 SEM 的表征图进行对比发现,如图 14 所示, Fe₃O₄/ZIF-

9-1 经四次循环后其 XRD 图谱并无明显变化, 而 从其 SEM 图可看出, 经过四次循环后, Fe₃O₄/ZIF-9-1 的形貌仍与初始保持一致, 说明催化反应过程 没有破坏 Fe₃O₄/ZIF-9-1 形貌及结构, Fe₃O₄/ZIF-9-1 作为 PMS 体系中降解 MB 的催化剂具有较好的循 环使用特性.

图 13 Fe₃O₄/ZIF-9-1 的循环催化曲线图(催化剂量:50 mg·L⁻¹; MB 质量 浓度:50 mg·L⁻¹; PMS 量:150 mg·L⁻¹; 初始 pH:5.35±0.05; 温度: 25 °C) Fig.13 Diagram of cyclic catalysis of Fe₃O₄/ZIF-9-1 (catalyst concentration: 50 mg·L⁻¹; MB concentration: 50 mg·L⁻¹; PMS concentration: 150 mg·L⁻¹; pH: 5.35 ± 0.05; temperature: 25 °C)

3 结论

(1)通过超声辅助溶剂热法合成 Fe₃O₄/ZIF-9 复合催化剂.当 Fe₃O₄/钴盐摩尔比为1:1时, ZIF-9 立方状颗粒表面附着较多类球形颗粒,磁化强度 达 7.6 A·m²·kg⁻¹,具有良好铁磁性.

(2) Fe₃O₄/ZIF-9-1 复合催化剂 30 min 内对 MB 降解率达 95.1%,其 10 min 内催化降解动力学参数 为 0.101 min⁻¹,表现出良好的催化性能.其催化性 能在 pH 为 5~9 范围内保持稳定的高催化性能, 且经过 4 次循环实验效率基本保持不变.

(3) 通过对 Fe₃O₄/ZIF-9-1+PMS 体系中的活性

物种和 Fe/Co 间的协同作用的探究,发现 Fe₃O₄/ ZIF-9-1+PMS 体系是以单线态氧¹O₂ 为主导的多自 由基反应体系,通过 SO₄·和·OH 协同降解有机污 染物. Fe₃O₄/ZIF-9-1 结构中存在大量二价不饱和 Fe/Co 位点, Fe²⁺可降低 Co³⁺的还原电位,铁离子的 引入加速了钴离子的变价循环,提升了催化速率.

参考文献

- Fang Y, Yang Z G, Li H P, et al. MIL-100(Fe) and its derivatives: From synthesis to application for wastewater decontamination. *Environ Sci Pollut Res Int*, 2020, 27(5): 4703
- [2] Lan X, Liu Q, Zhou X T, et al. Research progress of adsorption method to remove tetracycline from wastewater. *Chin J Process Eng*, 2022, 22(8): 989
 (兰雄, 刘钦, 周新涛, 等. 吸附法脱除废水中四环素的研究进展.

过程工程学报, 2022, 22(8): 989)

- [3] Qiao J, Xiong Y Z. Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. *J Water Process Eng*, 2021, 44: 102308
- [4] Mueses M A, Castillo-Castellón J V, Colina-Marquez J A, et al. The history and prospective of the AOPs for environmental applications in Colombia. *ChemistrySelect*, 2021, 6(44): 12482
- [5] Mishra S, Swain S, Sahoo M, et al. Microbial colonization and degradation of microplastics in aquatic ecosystem: A review. *Geomicrobiol J*, 2022, 39(3-5): 259
- [6] Zhou R, Mi H W, Wang Y Y, et al. Research progress on advanced oxidation technology for treatment of refractory organic pollutants. *Guangzhou Chem Ind*, 2022, 50(18): 7
 (周锐, 米宏伟, 王艳宜, 等. 高级氧化技术处理难降解有机污染物研究进展. 广州化工, 2022, 50(18): 7)
- [7] Han W L, Dong L Y. Activation methods of advanced oxidation processes based on sulfate radical and their applications in the degradation of organic pollutants. *Prog Chem*, 2021, 33(8): 1426 (韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其 在有机污染物降解上的应用. 化学进展, 2021, 33(8): 1426)
- [8] Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. *Environ Sci Technol*, 2004, 38(13): 3705
- [9] Xu D. Design, Synthesis and Catalytic Applications of Metal-Organc Frameworks-Derived Nanocomposites [Dissertation]. Changchun: Jilin University, 2017 (徐丹. 基于金属有机骨架化合物的纳米复合材料的设计合成 及催化性能研究 [学位论文]. 长春: 吉林大学, 2017)
- [10] Zhai Z Y, Zhang X L, Li C J. Research progress on MOFs/fiber materials for resistive gas sensors. *Chin J Eng*, 2020, 42(9): 1096 (翟振宇,张秀玲,李从举. 金属有机骨架(MOFs)/纤维材料用于 电阻式气体传感器的研究进展. 工程科学学报, 2020, 42(9): 1096)

- [11] Li X J, Liao F Z, Ye L M, et al. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment. *Chem Ind Eng Prog*, 2019, 38(10): 4712
 (李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化 过硫酸盐在水处理中的应用进展. 化工进展, 2019, 38(10): 4712)
- [12] Gao Z G, Yang K, Zhao Z H, et al. Design principles in MOFderived electromagnetic wave absorption materials: Review and perspective. *Int J Miner Metall Mater*, 2023, 30(3): 405
- [13] Zhou T, Zhao L J, Ye J S, et al. Preparation and catalytic performance study of Fe₃O₄ fenton's reagent. *Shandong Chem Ind*, 2021, 50(24): 18
 (周腾, 赵玲君, 叶纪盛, 等. Fe₃O₄ 类芬顿试剂的制备与催化性能研究. 山东化工, 2021, 50(24): 18)
- [14] Huang Y, Zhang L P, Huan W W, et al. A study on synthesis and properties of Fe₃O₄ nanoparticles by solvothermal method. *Glass Phys Chem*, 2010, 36(3): 325
- [15] Yao B Q, Lua S K, Lim H S, et al. Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. *Microporous Mesoporous Mater*, 2021, 314: 110777
- [16] Du P D, Hieu N T, Thien T V. Ultrasound-assisted rapid ZIF-8 synthesis, porous ZnO preparation by heating ZIF-8, and their photocatalytic activity. *J Nanomater*, 2021, 2021: 1
- [17] Qu Y, Qin L, Liu X G, et al. Magnetic Fe₃O₄/ZIF-8 composite as an effective and recyclable adsorbent for phenol adsorption from wastewater. *Sep Purif Technol*, 2022, 294: 121169
- [18] Marshall C R, Timmel E E, Staudhammer S A, et al. Experimental evidence for a general model of modulated MOF nanoparticle growth. *Chem Sci*, 2020, 11(42): 11539
- [19] Lee S Y, Jang H W, Lee H R, et al. Size effect of metal-organic frameworks with iron single-atom catalysts on oxygen-reduction reactions. *Carbon Lett*, 2021, 31(6): 1349
- [20] Chen X, Chen X, Yu E Q, et al. *In situ* pyrolysis of Ce-MOF to prepare CeO_2 catalyst with obviously improved catalytic performance for toluene combustion. *Chem Eng J*, 2018, 344: 469
- [21] Li J W, Han X, Chai R X, et al. Metal-doped (Cu, Zn)Fe₂O₄ from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst. *Int J Miner Metall Mater*, 2020, 27(7): 996
- [22] Song Y, Gao X, Lu X, et al. Research progress in the preparation of ZIF-8@TiO₂ composite materials and their photocatalytic applications. *J Qilu Univ Technol*, 2022, 36(5): 38
 (宋宇, 高翔, 卢西, 等. ZIF-8@TiO₂ 复合材料制备及其光催化应用研究进展. 齐鲁工业大学学报, 2022, 36(5): 38)
- [23] Xu H, Du H L, Du X, et al. Photocatalytic degradation characteristics of ZIF-8 synergistically enhanced with TiO₂. Bull Chin Ceram Soc, 2021, 40(3): 1029
 (徐行, 杜慧玲, 杜娴, 等. TiO₂ 协同增强 ZIF-8 光催化降解特性 研究. 硅酸盐通报, 2021, 40(3): 1029)
- [24] Liu H T, Ding Y, Xu L H, et al. Photocatalytic degradation of

methylene blue by ZIF-8/CdS composites. *Environ Chem*, 2023, 42(1): 288

(刘海涛,丁颖,徐丽慧,等. ZIF-8/CdS 复合材料对亚甲基蓝的 光催化降解.环境化学,2023,42(1):288)

- [25] Wang L. Synthesis of Hybrid Nanocomposites of ZIF-8 with Few-Layer Black Phosphorus for Photo Degradation of Methylene Blue [Dissertation]. Xiamen: Xiamen University, 2017
 (王练. ZIF-8/BP 纳米复合材料的制备及光催化降解亚甲基蓝 的应用[学位论文]. 厦门: 厦门大学, 2017)
- [26] Niu L, Wu A M, Wang J Y, et al. Advances in preparation methods of magnetic covalent organic frameworks. *Res Environ Sci*, 2020, 33(9): 2118
 (牛琳, 吴爱明, 王珺瑜, 等. 磁性共价有机框架的制备方法研究. 环境科学研究, 2020, 33(9): 2118)
- [27] Chalid M, Masrudin, Mustafa J H. Study of nano-Fe₃O₄ addition on magnetic and mechanical properties of HMDI-based polyurethane. *Mater Sci Forum*, 2017, 894: 25
- [28] Chen M T, Wang N, Wang X B, et al. Enhanced degradation of tetrabromobisphenol A by magnetic Fe₃O₄@ZIF-67 composites as a heterogeneous Fenton-like catalyst. *Chem Eng J*, 2021, 413: 127539
- [29] Miao J E, Zhu Y A, Lang J Y, et al. Spin-state-dependent peroxymonosulfate activation of single-atom M–N moieties via a radical-free pathway. *ACS Catal*, 2021, 11(15): 9569
- [30] Qin Q D, Gao X, Wu X, et al. NaBH₄-treated cobalt-doped g-C₃N₄

for enhanced activation of peroxymonosulfate. *Mater Lett*, 2019, 256: 126623

- [31] Wu S H, Yang C P, Lin Y, et al. Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon. *J Environ Sci*, 2022, 115: 330
- [32] Li Q Q, Liu J D, Ren Z J, et al. Catalytic degradation of antibiotic by Co nanoparticles encapsulated in nitrogen-doped nanocarbon derived from Co-MOF for promoted peroxymonosulfate activation. *Chem Eng J*, 2022, 429: 132269
- [33] Hu P D, Long M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. *Appl Catal B*, 2016, 181: 103
- [34] Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. *Chem Eng J*, 2017, 310: 41
- [35] Khan A, Liao Z W, Liu Y, et al. Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co₃O₄@MnO₂ nanocatalyst. *J Hazard Mater*, 2017, 329: 262
- [36] Wu X, Sun D D, Ma H C, et al. Activation of peroxymonosulfate by ZIF-67/g-C₃N₄ composite catalyst for degradation of methylene blue. *J Dalian Polytech Univ*, 2022, 41(4): 275
 (吴璇, 孙德栋, 马红超, 等. ZIF-67/g-C₃N₄ 复合催化剂活化过硫 酸一氢盐降解亚甲基蓝. 大连工业大学学报, 2022, 41(4): 275)