交换钢包过程对 IF 钢连铸板坯表层洁净度的影响

邓小旋^{1,2)}∞,王新华¹⁾,李林平¹⁾,魏鹏远¹⁾,季晨曦²⁾,曾 智²⁾,田志红³⁾

1) 北京科技大学冶金与生态工程学院,北京 100083 2) 首钢技术研究院,北京 100043 3) 首钢京唐公司炼钢部,唐山 063200
 ☑ 通信作者, E-mail: dxx042@163.com

摘 要 采用 ASPEX 扫描电镜中的自动特征分析功能研究了交换钢包过程(取样浇次第4、5 炉)对 IF 钢连铸板坯表层的洁 净度的影响 ,且对比研究了交换钢包过程浇铸铸坯(交接坯)与正常浇铸铸坯(正常坯)的表层洁净度.结果表明:正常坯与交 接坯中尺寸大于 20 μm 的表层夹杂物可分为三类:(1) 簇群状 Al₂O₃(包括气泡+簇群状 Al₂O₃);(2) 簇群状 TiO_x-Al₂O₃夹杂 物;(3) 保护渣夹杂物.正常坯表层的大型夹杂物主要为簇群状 Al₂O₃,没有检测到保护渣夹杂物.换包开浇后铸坯总氧质量 分数从 14×10⁻⁶ 增至 17×10⁻⁶ 交接坯表层检测到较多的第2 夹杂物,说明钢包开浇后钢水被轻微氧化.此外, 纲包开浇后剧 烈的液面波动也导致了保护渣的卷入.在当前工艺下,换包对 IF 钢铸坯表层洁净度的影响长度约为 11 m. 关键词 IF 钢;连铸;铸坯;表面;洁净度;夹杂物;氧化铝 分类号 TF 777.1

Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs

DENG Xiao-xuan^{1 2)} 🖾 , WANG Xin-hua¹⁾ , LI Lin-ping¹⁾ , WEI Peng-yuan¹⁾ , JI Chen-xi²⁾ , ZENG Zhi²⁾ , TIAN Zhi-hong³⁾

1) School of Metallurgical and Ecological Engineering , University of Science and Technology Beijing , Beijing 100083 , China

2) Shougang Research Institute of Technology Beijing 100043 , China

3) Steelmaking Department , Shougang Jingtang United Iron & Steel Co. , Ltd. , Tangshan 063200 , China

⊠ Corresponding author , E-mail: dxx042@163.com

ABSTRACT The effect of ladle change process (the 4th heat to the 5th heat) on the surface cleanliness of IF steel continuous casting slabs was investigated by total oxygen measurement and automatic feature analysis equipped on ASPEX. A comparison of surface cleanliness was performed between transition slabs (cast during ladle change process) and normal slabs (cast under normal condition). It is found that inclusions larger than 20 μ m are classified into three types: (1) cluster alumina (including bubble + cluster a-lumina inclusions); (2) cluster TiO_x-Al₂O₃ inclusions; and (3) mold powder inclusions. In terms of surface inclusions in normal slabs , most of the inclusions detected in the scanning area are cluster alumina , and no mold powder inclusions are found. While for transition slabs , the total oxygen content increases from 14 × 10⁻⁶ to 17 × 10⁻⁶ , and the number density of Type 2 inclusions goes up since the cast start of the 5th heat , indicating re-oxidation of the steel melt during ladle change process. Furthermore , level fluctuation in the mold is also severe since the cast start of the 5th heat , leading to mold powder entrapments. The affected length of cast slabs during ladle change process is about 11 m under the present casting condition.

KEY WORDS IF steel; continuous casting; slabs; surfaces; cleanliness; inclusions; alumina

钢中大型非金属夹杂物被认为是引起以汽车板 为代表的冷轧板卷表面缺陷的主要原因^[1],这些分 布在铸坯表层的大型夹杂物在后续的轧制过程中被 碾碎、拉长,形成所谓的线条状缺陷,极大地影响了 IF钢后续的涂镀性能.因此为了减少成品的缺陷 率,对铸坯的表层大型非金属夹杂物数量有严格的

收稿日期: 2013-05-05

DOI: 10. 13374/j. issn1001–053x. 2014. 07. 005; http://journals.ustb.edu.cn

基金项目:国家重点基础研究发展计划资助项目(2010CB30806)

限制.

铸坯的表层大型夹杂物主要来自于以下几个方 面:(1)吹入结晶器的氩气泡吸附着夹杂物被凝固 的坯壳捕捉;(2)夹杂物聚集在水口内壁形成簇群 状的大型夹杂物^[1](如簇群状 Al₂O₃夹杂物),这些 夹杂物被吹入的氩气或者高速流动的钢水冲入到结 晶器钢水内部,在上浮过程中被凝固坯捕获;(3)结 晶器表面钢水的剧烈波动与结晶器钢水的表面流速 过大导致液态或固态保护渣颗粒卷入到钢液之中被 凝固坯壳捕捉;(4)浇铸开始或者更换钢包时钢水 直接与空气或氧化性强的钢渣接触而产生的大型夹 杂物. 文献[2]报道这些现象更易发生在所谓的 "非稳态浇铸"过程中.在一个浇次中,非稳态浇铸 主要指的是浇铸开始、浇铸结束、拉速变动与交换钢 包等阶段.本文主要讨论交换钢包时的情形.

为了达到连续铸造的目的,交换钢包(换包)是 不可避免的. 连铸过程上炉与下炉之间交换大包 时,中间包钢水液面会经历先降低后上升的过程,在 这个过程中,中包液位会发生变化. 水模型研究表 明:中包液位变化过大会造成结晶器内钢水流动状 态改变^[3],而结晶器内流场和液面特征^[4-5]会对后 续铸坯质量产生很大的影响.

以往对交接坯的研究通常将其作为一个点(静 态) 来处理, 即认为换钢包过程中铸坯的洁净度在 拉速方向上是一致的^[26];但实际的换包过程包含 着两炉钢水的混合、钢包的下渣、钢水的二次氧化以 及结晶器保护渣的卷入 是一个非稳态的过程 所以 应该沿拉坯方向来评价交接坯的洁净度. 此外 ,关 于大型夹杂物数量的检测以往多采用光学显微 镜^[7]、大样电解法^[3]、扫描电镜+能谱(SEM+EDS) 逐个分析法^[8]、MIDAS^[9]等方法 这些方法各有优缺 点 具体的夹杂物检测方法及其优缺点可参见文献 [10-11]. 本文以某钢厂生产的汽车板为载体,使 用一种在较大钢样截面上统计大型夹杂物的新方 法 详细分析了换包过程中铸坯的大型表层夹杂物 的特征(包括种类、形貌、数量与尺寸分布)在拉速 方向上的变化. 此外,本文还对比分析了交接坯与 正常浇铸铸坯的表层洁净度 ,为现场对交接坯的处 理提供参考.本次试样分析的总面积为 52422 mm².

1 实验过程

本工业实验浇铸的钢种为 IF 钢,一共实验一个 浇次共六炉,采用"KR 铁水脱硫→转炉脱磷→转炉 脱碳→RH 精炼→板坯连铸"工艺路线. 实验的钢包 钢水容量是 300 t,中间包钢水容量为 80 t. 连铸机为 直弧式两流连铸机,板坯规格为900~1650 mm× 237 mm,取样的铸坯断面为1200 mm×237 mm.取 样炉次中包钢水的化学成分为:[% C],0.0016; [% Si],0.0026; [% Mn],0.11; [% P],0.004; [% S],0.007; [% Al],0.031; [% Ti],0.07.

本次实验所取是沿拉速方向长为 19.4 m 的交 接坯(对应的铸坯浇铸长度为 232.8~252.2 m).该 段铸坯是实验浇次的第4炉与第5炉交换大包时浇 铸的.图1为该时间段中间包钢水质量、拉速和结 晶器液面波动情况.图1中的浇铸长度根据拉速一时间曲线对时间变量取积分得到.从图1中可以看 到 在此次大包交换过程中,拉速保持为 1.5 m• min⁻¹不变,中间包钢水质量由 67 t (对应中包液位 1020 mm)降低至最低 59.7 t (对应中包液位 920 mm) 然后又回升至 67 t.中间包钢水质量从最低点 回升至正常吨位总共浇铸了约6 m.此外,作为对 比,本实验还在现场选取了拉速稳定在 1.5 m•min⁻¹ 条件下的第4、5 炉正常浇铸的铸坯(第4、5 炉的第 3 块铸坯尾部).

图 1 交换钢包时中间包钢水质量、拉速与结晶器的液面波动 Fig. 1 Tundish melt weight, casting speed and meniscus fluctuation during ladle change process

将所取的交接坯沿拉坯方向在侧边取宽度为 100 mm 长条试样运回北京科技大学,如图 2(a)所 示. 然后北京科技大学采用火焰切割方法,每隔 1000 mm 切割出 100 mm × 70 mm × 25 mm 小块试样, 如图 2(b)所示.其中一部分取出圆柱状试样(尺寸 为 ϕ 5 mm × 20 mm)做T.O和[N]含量分析,另一部 分用来做夹杂物分析.对于正常坯(仅分析第5炉 正常坯的夹杂物),取一拉坯方向长度为100 mm 横 截面试样(见图 3(a)),然后再对此横截面试样在 宽度方向每隔 1/8 宽度长取一小试样(70 mm × 50 mm × 25 mm),所以对一块横截面试样一共取七块 小试样.同时,为了分析正常坯的T.O和[N]含量, 分别在边部、宽度 1/4 与铸坯中心处的内弧面垂直 向下取圆柱状试样(尺寸为 φ5 mm × 20 mm),如图 3 (b) 所示.

图 2 第 4、5 炉交接坯的取样示意图(单位: mm)

Fig. 2 Schematic diagram of sampling transition slabs for the 4th to 5th heat (unit: mm)

图 3 第 4、5 炉正常坯取样的示意图

Fig. 3 Schematic diagram of sampling normal slabs in the 4th and 5th heat

交接坯与正常坯中的 T. 0 与 [N]分析均采用 LECO 分析仪测定 ,T. 0 与 [N]含量分别采用红外吸 收法与热导法测定. 每个试样测定三次并取平均值 作为最终分析结果. 交接坯与正常坯用于夹杂物检 验的试样尺寸均为 70 mm × 50 mm × 25 mm, 使用自 动研磨抛光设备(ATM GmbH Rubin 530)将内弧表 面磨掉 0.5 mm 并抛光至镜面后采用扫描电镜进行 分析检验,每小块试样分析检验面积为2000 mm² (由于表面平整原因,部分试样分析检测面积少于 2000 mm²). 夹杂物分析使用 ASPEX PSEM Explorer 自动扫描电镜,该电镜可以大面积自动统计夹杂物, 并自动统计扫描到的每一个夹杂物颗粒的尺寸、分 布、位置、成分等信息. 设备的原理可参见文献 [12]. 值得注意的是,使用该电镜统计时会对大型 夹杂物进行分割,所以统计夹杂物数量时作者使用 该电镜自带的重新定位功能(relocate)进行人工校 正.为了验证该方法对簇群状 Al₂O₃夹杂物数量的 分析精度,本研究将其与人工检测方法(在扫描电 镜下手动移动视场进行统计)进行了对比,即对同 一试样面积为 2066 mm^2 表面上的 Al₂O₃夹杂物 ,分 别采用人工与 ASPEX 检测方法进行分析检测. 由 表1给出的分析结果可知 本研究采用的 ASPEX 电

镜分析方法可以保证很高的分析精度,且相对节省 时间.

表1 不同统计方法条件下 Al₂O₃夹杂物数量

实验方法	20 ~	20 ~ 50 ~ 100 ~		平均杙的/		
	50 µm	100 µm	300 µm	> 500 μm	n	
人工检测	27	6	0	0	~4.0	
ASPEX 检测	26	8	0	0	1.5	

2 T.O 与 [N]含量分析

图 4 为本次实验第 4、5 炉交换钢包过程浇铸 的交接坯表层试样 T. O 与 [N]含量变化,同时给 出了正常坯的 T. O 与 [N]含量. 图中给出的值为 所测量的三个位置(铸坯边部、宽度 1/4 处与铸坯 中心处)的平均值. 第4 炉正常坯试样 T. O 与 [N] 质量分数分别为 13 × 10⁻⁶和 22 × 10⁻⁶,第 5 炉正 常坯试样T. O 与 [N]质量分数分别为 10 × 10⁻⁶和 16.9 × 10⁻⁶. 在浇铸长度为 232.8 m 时,T. O 质量 分数为 14 × 10⁻⁶,与第 4 炉正常坯的水平相当. 随 着中包液位的上升,铸坯的 T. O 质量分数从 14 × 10⁻⁶升高至17×10⁻⁶(长度范围为234~238 m). 可能的原因是:(1)开浇过程中第5炉的钢水与长 水口内的空气接触,钢水被空气氧化导致铸坯 T.O含量的升高;(2)在中包液位上升的过程中, 结晶器的流场发生变化使液面波动加剧而导致保 护渣卷入到钢液之中. 随着浇铸的进行(浇铸长度 为 237.8~251.8m),中包吨位(液位)已恢复到正 常水平(67 t). 铸坯的 T.O 由 17 × 10⁻⁶逐渐降为 12×10⁻⁶,并大致保持不变.下降的原因可以解释 如下: 假定铸坯中的 T.O 等于中包中钢水的 T.O, 所以第5炉中包钢水的 T.O 低于第4炉;在换包 过程中,两炉钢水会发生混合,所以浇铸出来的铸 坯的 T.O 含量会逐渐下降到接近于第5 炉铸坯的 T.O 水平. 对 [N]含量,从整个长度上看其呈下降 趋势(第5炉铸坯[N]含量低所致),在浇铸长度 236~239 m 的范围内, [N]含量有少量回升的 趋势.

Fig. 4 Comparison of T. O and [N] contents between normal slabs and transition slabs

3 夹杂物分析

3.1 夹杂物形貌与成分

分析得到的正常坯与交接坯内弧表层的大型夹 杂物按照形貌与成分可以分三类:(1) 簇群状 Al_2O_3 夹杂物;(2) 簇群状 $TiO_x - Al_2O_3$ 夹杂物;(3) $SiO_2 - CaO - Na_2O$ 系夹杂物.图5 为检测到的这三类夹杂 物的典型形貌.为了清晰地显示夹杂物的相分布, 图5 中的夹杂物形貌均采用扫描电镜的背散射模式 获取.第1 类簇群状 Al_2O_3 夹杂物的典型形貌如图5 (a)~(c) 所示.可见该类型夹杂物尺寸较大,有些 夹杂物尺寸甚至达到 100 μ m.第2 类夹杂物的典型 形貌如图 5(d)~(f) 所示.从图 5(d) 所示的元素 面分布图中可以看出,该类夹杂物包含两相——主 体的 Al_2O_3 夹杂物相与一部分富 Ti 相(灰色部分), 且从这类夹杂物的形貌可以看出主体的 Al_2O_3 夹杂物相的形状与第1类夹杂物相似,呈不规则形貌,但 富 Ti 相呈球形或近球形,说明该富 Ti 相在钢液中 以液态形式存在.图 5(g)~(i)为第3类保护渣夹 杂物的典型形貌.可见该类夹杂物尺寸比第1、2类 都大.从图 5(g)的元素面扫描结果来看,该类夹杂 物含有较多的 Si、Ca 与 Na 元素,且 CaO 与 SiO₂的 质量分数相当,同时还含有少量的 MgO 和 Al_2O_3 ,与 结晶器保护渣成分基本吻合,应为来自结晶器保护 渣的夹杂物.

图 5 IF 钢铸坯表层大型夹杂物的典型形貌以及部分夹杂物的 元素面分布. (a) ~(c) 第1 类夹杂物;(d) ~(f) 第2 类夹杂物; (g) ~(i) 第3 类夹杂物

Fig. 5 Morphologies of large-sized inclusions detected in the surface layer of IF steel slabs and elemental mapping patterns: (a) ~ (c) Type (1) inclusions; (d) ~ (f) Type (2) inclusions; (g) ~ (i) Type (3) inclusions

3.2 正常坯中夹杂物数量与尺寸分布

表 2 为统计得到的第 5 炉正常坯中三种夹杂物 的数量与尺寸分布. 正常坯一共在内弧表层取七块 试样,每块试样分析的面积约为2000 mm²,由于表 面平整原因,部分试样分析检测面积少于2000 mm^2 ,所以正常坯分析的总面积略小于 14000 mm², 为 12351 mm². 从表 2 可以得知: 正常坯中的大型夹 杂物几乎全是簇群状 Al₂O₃夹杂物. 表 3 为与表 2 对应的夹杂物的数量密度. 可见在正常坯中,簇群 状 Al₂O₃夹杂物的数量密度在尺寸为 20~50 μm、50~ 100 µm、100~300 µm 和>300 µm 的数量密度分别 为 1. 247、0. 178、0. 032 和 0 cm⁻². 在统计的面积内 仅发现一个簇群状 TiO_x-Al₂O₃ 夹杂物,且尺寸较 小. 此外 在统计中没有发现保护渣成分的大型夹 杂物,这与JFE公司的学者发表的结果^[13]一致. JFE 公司的学者利用光学显微镜研究了距铸坯宽面 内/外弧表面1mm 处的尺寸大干 50 µm 的大型夹杂 物数量 统计的总面积为 25200 mm². 他们认为铸坯 表层大于 50 μm 的夹杂物主要有三种:(1) 簇群状 Al₂O₃夹杂物 (2) 气孔 (3) 气孔 + 簇群状 Al₂O₃夹 杂物; 且大于 50 μm 的夹杂物总数量密度为 0.51 cm^{-2} . 本文中大于 50 μ m 的铸坯表层夹杂物的数量

密度为 0. 21 cm⁻² 小于 JFE 学者的研究结果.

一般认为铸坯表层夹杂物只有超过一定尺寸才 会对后续的产品产生危害,但关于对 IF 钢等冷轧类 板卷表面质量有害的夹杂物临界尺寸并没有统一的 认识. Sahai 和 Emi^[14]认为冷轧薄板用的铸坯中有 害夹杂物尺寸为 240 μm; Cramb^[15]则认为对深冲产 品表面质量有害的尺寸为 100 µm. 如果以 100 µm 作为评价指标 本文所研究的正常坯中含有四个对 表面质量有害的夹杂物,且都是簇群状的 Al₂O₃夹 杂物 其形貌如图 6 所示. 图 6(a) 和(b) 为 Al₂O₃夹 杂物的二次电子图像 图 6(c) 和(d) 为背散射电子 像. 图 6(a) ~(c) 很清晰地显示了该夹杂物是由微 小 Al₂O₃颗粒聚合而成的特征. 图 6(d) 中的夹杂物 呈线状 形成这种特殊形貌的可能原因是: 微小的 Al₂O₃颗粒附着在 Ar 气泡表面,并在其表面聚合成 大型夹杂物 最终气泡破裂 但这种夹杂物仍然保留 着由于气泡的作用所拥有的独特形貌. 这种"气泡+ Al₂O₃夹杂物"也被认为是形成冷轧板卷表面缺陷的 原因之一[13];但在本研究中这数量较少,所以在统 计数量时与簇群状 Al₂O₃夹杂物放在一起统计. 由 以上论述可知: 对于正常浇铸的汽车板来说, 大型的 Al_2O_3 夹杂物是引起其冷轧板表面缺陷的主要原因.

表 2	第5 炉正常浇铸铸坯表层大型夹杂物的数量

able 2	Number of	large-sized	inclusions	for	normal	slabs	of	the 5th	heat
--------	-----------	-------------	------------	-----	--------	-------	----	---------	------

夹杂物类型	20 ~ 50 µm	50 ~ 100 µm	100 ~ 300 µm	> 300 µm	检测面积/mm ²
簇群状 Al ₂ O ₃	154	22	4	0	
簇群状 TiO _x -Al ₂ O ₃	1	0	0	0	12351
SiO ₂ -CaO-Na ₂ O 系	0	0	0	0	

	रर अ	东) 炉止吊浇铸	街些农民人望关宗被	的奴里名反		
	Table 3 Num	ber density of large-	sized inclusion for nor	mal slabs of the 5th	heat	cm^{-2}
夹杂物类型	20 ~ 50 μm	$50 \sim 100 \; \mu \mathrm{m}$	100 ~ 300 µm	> 300 µm	>50 µm	>100 µm
簇群状 Al ₂ O ₃	1.247	0.178	0.032	0.000	0. 210	0.032
簇群状 TiO _x -Al ₂ O ₃	0.008	0	0	0	0	0
SiO_2 —CaO—Na ₂ O 系	0	0	0	0	0	0

图 6 正常坯中尺寸大于 100 μm 的夹杂物形貌. (a,b) 二次电子像; (c,d) 背散射电子像 Fig. 6 Morphologies of inclusions larger than 100 μm detected in normal slabs: (a,b) SE images; (c,d) BSE images

3.3 交接坯中夹杂物数量与尺寸分布

图 7(a) ~(c) 分别第 1 类、第 2 类和第 3 类夹 杂物的数量密度在拉速方向上的变化,同时图中也 给出了与之对应的液面波动、拉速与中间包钢水质 量等工艺参数.从图 7(a)中可以看出:第1类夹杂 物主要是小于 50 μm 的夹杂物 大于 100 μm 的簇群

Fig. 7 Number density variations of Type 1 inclusions (a), Type 2 inclusions (b) and Type 3 inclusions (c) along the casting direction in transition slabs

状 Al₂O₃夹杂物较随机地分布在所取的长度为 19.4 m 的交接坯中. 图 7(b) 为第 2 类夹杂物的数量密 度在拉速方向上变化. 可以发现这种夹杂物尺寸较 小,所检测到的夹杂物尺寸均小于100 µm. 在浇铸 长度约为 234 m 时,第5 炉钢水开浇,开浇后的前6 m (浇铸长度 234~240 m) 检测出了较多的第2类 夹杂物 但在该交接坯表层其他位置很少检测出该 类夹杂物. 关于 Fe-Al-Ti-O 系在 1873 K 下的热力 学相图以及 Al-Ti-O 复合夹杂物的形成机理已有 较多学者报道. 从热力学来说,对于本实验钢中化 学成分的质量分数([% Al]_s = 0.031, [% Ti] = 0.07) 稳定相应为 Al₂O₃夹杂物^[16],但是在换包过 程中出现了较多的 Al-Ti-O 夹杂物,可能的原因是 换包过程中钢水被二次氧化,钢水中已存在的簇群 状 Al₂O₃夹杂物周围的局部 [Al]。含量非常低 达到 了 Al-Ti-O 形成的热力学条件. 所以形成了较多的 第二类 TiO_x-Al₂O₃夹杂物^[17]. 图 7(c) 为第 3 类夹 杂物在拉速方向上的变化. 可以发现该夹杂物的数 量与液面波动的幅值有较为明显的对应关系. 开浇 后的前2m(浇铸长度235.8m)结晶器的液面波动 达到了 ± 5 mm 此时铸坯表层检测到较多保护渣夹 杂物.此外,在浇铸长度为243.8、246.8和249.8m 处也同样检测到了保护渣夹杂物.需要指出的是, 尽管交接坯的表层存在着较多的第2、3类夹杂物, 但是对比这三类夹杂物的绝对数量可知,交接坯表 层的主要夹杂物仍然为第1类夹杂物.

3.4 交接坯与正常坯中夹杂物的对比

图 8 所示为交接坯与正常坯中表层大于 50 μm 的大型夹杂物的总数量对比,其中虚线为第 5 炉正 常坯的夹杂物数量密度.开始交换大包后,中间包 钢水质量会减少,但交接坯试样的夹杂物数量基本 没有增加.当第 5 炉钢包开始浇铸后(中间包钢水 质量开始增加),铸坯试样中大型夹杂物数量出现 较明显增加,且此时现场监测到的结晶器波动增大. 铸坯表层试样大型夹杂物增加这一趋势在中间包钢 水恢复至正常容量后并没有立即停止,在该交接坯 最后 4 m 处,夹杂物数量密度才稳定在该炉正常坯 数量水平(0.21 cm⁻²).换包对夹杂物数量的影响 长度约为 11 m.此外,在交接坯试样中多次检测到 来源于结晶器保护渣卷入形成的大型夹杂物.图 8 中的实心圆点代表检测到的大于 50 μm 的保护渣夹 杂物.如前文所述,在正常铸坯中并没有检测到保 护渣夹杂物. 表 4 列出了交接坯与正常坯尺寸大于 50 μm 的大型夹杂物的数量密度对比. 需要说明的 是 表 4 中的簇群状夹杂物包含了第 1 类与第 2 类 夹杂物且表中交接坯的检测面积为在拉速方向上所 检测试样面积的总和. 可见交接坯中大于 50 μm 的 簇群状夹杂物和来自保护渣夹杂物的平均数量密度 分别为 0. 234 和 0. 0132 cm⁻² 均大于正常坯表层夹 杂物的数量密度. 结合 3. 2 节的讨论,可以认为保 护渣的卷入与钢水的二次氧化是影响交接坯表面质 量的主要因素.

Fig. 8 Comparison of number density between normal slabs and transition slabs

表 4 交接坯与正常坯表层大于 50 μm 大型夹杂物的数量密度 **Table 4** Number density of inclusions larger than 50 μm for normal slabs and transition slabs cm⁻²

铸坯试样	检测面积 $/mm^2$	簇群状夹杂物	来源于保护渣
正常浇铸	12351	0.210	0
交接坯	40071	0.234	0.0132

4 结论

 (1) 根据夹杂物的形貌与成分,可将正常坯与 交接坯中的尺寸大于 20 μm 的表层大型夹杂物分为
 三类:第1 类为簇群状 Al₂O₃(包括气泡+簇群状 Al₂O₃),第2 类为簇群状 TiO_x-Al₂O₃夹杂物,第3 类 为保护渣夹杂物.

(2) 正常坯中大于 20 μm 的夹杂物主要为簇群状 Al₂ O₃(包括气泡+簇群状 Al₂ O₃),在检测的
 12351 mm²钢样面积内没有发现保护渣夹杂物.

(3)分析了取样浇次第4、5炉交接坯中第1 类、第2类与第3类夹杂物的数量在拉速方向上的 变化,发现在第5炉开浇后前6m尺寸范围在20~ 100μm的第2类夹杂物数量明显增多,这也与T.0 的分析一致.说明钢包开浇后钢水被二次氧化,导 致簇群状 Al₂O₃夹杂物周围的[Al],含量下降,促进 了第2类夹杂物的产生.此外,开浇后剧烈的液面 波动也导致了保护渣的卷入.在当前工艺条件下, 换包对 IF 钢铸坯表层洁净度的影响长度约为11m.

参考文献

- Kumar A, Choudhary S K, Ajmani S K. Distribution of macroinclusions across slab thickness. *ISIJ Int*, 2012, 52(12): 2305
- [2] Zhang Q, Wang L, Wang X. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. *ISIJ Int*, 2006, 46(10): 1421
- [3] Zhang L, Yang S, Cai K, et al. Investigation of fluid flow and steel cleanliness in the continuous casting strand. *Metall Mater Trans B*, 2007, 38(1): 63
- [4] Deng X X , Xiong X , Wang X H , et al. Effect of nozzle bottom shapes on level fluctuation and meniscus velocity in high-speed continuous casting molds. J Univ Sci Technol Beijing , 2014 , 36 (4): 515

(邓小旋,熊霄,王新华,等.水口底部形状对高拉速板坯连 铸结晶器液面特征的影响.北京科技大学学报,2014,36 (4):515)

- [5] Deng X X, Xiong X, Wang X H, et al. Water modeling study on submerged entry nozzles in continuous casting slab mold for high speed casting. J Univ Sci Technol Beijing, 2013, 35(10): 1304 (邓小旋,熊霄,王新华,等. 高拉速板坯连铸结晶器浸入式 水口的水模型研究. 北京科技大学学报, 2013, 35(10): 1304)
- [6] Wang M , Bao Y P , Cui H , et al. Surface cleanliness evaluation in Ti stabilised ultralow carbon (Ti-IF) steel. *Ironmaking Steelmaking* , 2011 , 38(5): 386
- [7] Kiessling R. Clean steel: a debatable concept. Met Sci , 1980 , 14
 (5): 161
- [8] Rastogi R , Cramb A W. Inclusion formation and agglomeration in aluminum killed steels // 84th Steelmaking Conference Proceeding. Warrendale , 2001: 1047
- [9] Jacobi H , Wünnenberg K. Improving oxide cleanness on basis of MIDAS method. *Ironmaking Steelmaking*, 2003, 30(2): 130
- [10] Zhang L F. Indirect methods of detecting and evaluating inclusions in steel: a review. J Iron Steel Res Int, 2006, 13(4): 1
- [11] Zhang L , Thomas B G. State of the art in evaluation and control of steel cleanliness. *ISIJ Int*, 2003, 43(3): 271
- [12] Nuspl M, Wegscheider W, Angeli J, et al. Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis. Anal Bioanal Chem, 2004, 379(4): 640
- [13] Awajiya Y , Kubota Y , Takeuchi S. Inclusion entrapment location in solidified shell of ultra low carbon steel Slab // AISTech 2005 Proceeding. Charlotte , 2005: 65
- [14] Sahai Y , Emi T. Tundish Technology for Clean Steel Production. New Jersey: World Scientific , 2008: 19
- [15] Cramb A W. High Purity, Low Residual, and Clean Steels. New York: Marcel Dekker Inc, 1999: 49
- [16] Jung I H , Eriksson G , Wu P , et al. Thermodynamic modeling of the Al₂O₃-Ti₂O₃-TiO₂ system and its applications to the Fe-Al-Ti-O inclusion diagram. *ISIJ Int* , 2009 , 49(9): 1290
- [17] Jung I H. Overview of the applications of thermodynamic databases to steelmaking processes. *Calphad*, 2010, 34(3): 332