基于显式视觉提示的煤岩CT图像裂隙分割模型及应用

A Crack Segmentation Model for Coal-Rock CT Images Based on Explicit Visual Prompting and Its Applications

  • 摘要: 针对目前煤岩识别算法模型难以准确识别CT扫描图像中细小裂隙等问题,提出一种基于显式视觉提示的煤岩CT图像裂隙分割模型(EViP-CTCrack),并在自建的煤岩CT扫描图像数据集CTRock上进行了算法验证。EViP-CTCrack主要由残差混合连接卷积模块、交叉注意力上采样模块、多代表性向量分类器和显式视觉提示生成器等模块组成。实验证明,EViP-CTCrack在CTRock数据集上的平均交并比和平均精确率分别达到了88.1%和94.4%,取得了良好的裂隙分割效果。最后,将该模型应用于矿井钻孔裂隙识别,建立了孔隙度-抗压强度方程,可以快速推算其单轴抗压强度。

     

    Abstract: To address the challenge of accurately identifying fine fractures in CT scan images of coal and rock, this study proposes a fracture segmentation model based on explicit visual prompting for coal and rock CT images (EViP-CTCrack). The model is validated on a self-constructed coal and rock CT image dataset, CTrock. EViP-CTCrack primarily consists of components such as a residual mixed connection convolution module, a cross-attention upsampling module, a multi-representative vector classifier, and an explicit visual prompting generator. Experimental results demonstrate that EViP-CTCrack achieves an average intersection over union (IoU) of 88.1% and an average precision of 94.4% on the CTrock dataset, yielding promising fracture segmentation performance. Finally, the model is applied to fracture recognition in mining boreholes, where a porosity-compressive strength equation is established, facilitating the rapid estimation of uniaxial compressive strength.

     

/

返回文章
返回