喷嘴喷淋距离对连铸小方坯二冷均匀性的影响

Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet

  • 摘要: 研究了不同喷淋距离下连铸小方坯二冷喷嘴的水量分布,建立了凝固传热模型分析了82B钢连铸坯的热行为。该模型特别考虑了二冷区铸坯表面宽度方向的水流密度分布,并根据铸坯表面测温结果进行了模型校正。采用凝固传热模型研究了喷嘴喷淋距离对连铸二冷均匀性的影响。结果表明:喷嘴喷淋距离的增加有助于提高二冷水横向分布的均匀性,导致铸坯表面温度横向均匀性降低、纵向均匀性提高。这些效果有助于改善铸坯内部裂纹,但是会对角部裂纹产生不利影响。在二冷区前段喷嘴采用低喷淋距离,二冷区末段采用高喷淋距离,既可以提高铸坯角部温度,又能降低表面最大回温速率,有助于同时改善连铸坯角部和内部裂纹。在此基础上,提出了一种连铸小方坯二冷喷嘴布置方式,即二冷区每段喷嘴喷淋距离沿拉坯方向逐渐增加,该方法有助于提高连铸坯“纵‒横”冷却均匀性。

     

    Abstract: In the secondary cooling zone of continuous casting, the cooling uniformity of the billet largely depends on water flux distribution and is closely related to crack formation. Nozzle spray distance is the main influencing factor of water flux distribution in continuous casting billet. Therefore, the investigation of the effect of nozzle spray distance on secondary cooling uniformity is of considerable importance in the design and optimization of the secondary cooling system of the billet. In the present study, the water flux distributions of the nozzles used in the secondary cooling zone of continuous casting of the billet were measured under different spray distances. A heat transfer and solidification model was established to analyze the thermal behavior of 82B steel billet. The model specifically considered the distribution of secondary cooling water along the transverse direction and was calibrated via comparing the measured and simulated surface temperatures. The effect of nozzle spray distance on the secondary cooling uniformity of the billet was investigated using the model. Results show that the increase in nozzle spray distance helps to improve the uniformity of secondary cooling water along the transverse direction, resulting in the decreased transverse uniformity and increased longitudinal uniformity of surface temperature. These effects are beneficial for the internal cracks but harmful for the corner cracks of the billet. Increasing the nozzle spray distance in the first segment of the secondary cooling zone and decreasing the nozzle spray distance in the second segment of the secondary cooling zone can decrease the maximum reheating rate and increase the corner temperature, thereby achieving the purpose of simultaneously improving the internal and corner cracks of the billet. On this basis, a nozzle arrangement method, i.e., gradually increasing the nozzle spray distance along the casting direction of each segment in the secondary cooling zone was proposed. This method contributes to the improvement of “longitudinal–transverse” cooling uniformity of the continuous casting billet.

     

/

返回文章
返回