基于云理论的油气管道滑坡危险性综合评价

Comprehensive evaluation of landslide risks of oil and gas pipelines based on cloud theory

  • 摘要: 管道滑坡危险性评价是长输油气管道沿线滑坡灾害预防和治理中规划决策的重要依据.该评价组织由定量和定性两类指标构成,评价系统具有随机性和模糊性的特点.针对常用的定性和半定量评价法在处理系统的随机性和模糊性上存在顾此失彼和人为主观性强的问题,引入能同时有效反映事物随机性和模糊性的云理论,运用黄金分割率法构建5级标度的管道滑坡危险性状态标尺云和指标重要性权重云,提出定量指标的不确定性推理过程和定性指标专家群语言云转化的浮动云偏好集结算法,构建了油气管道滑坡危险性的综合评价模型并进行了工程例证分析.4处待评样本的综合评价结果与半定量法结果基本一致,并与实际相符.该模型软化了指标边界的硬划分,简化了指标数据的预处理;实现了评价的定量与定性融合和集成决策;提高了结果的精确性、合理性和可视化.

     

    Abstract: Landslides are serious geological hazards along long-distance oil and gas pipelines. Especially common are discontinuous-developing single landslides. A single landslide hazard can cause anything from pipeline rupture and fracture to complete failure and shutdown, thus triggering serious secondary disasters. Risk assessments of oil-and-gas-pipeline landslides are an effective method for ascertaining the degree of landslide risk and can provide an important scientific basis for planning and decision-making regarding landslide prevention and control along long-distance oil and gas pipelines. In addition, risk assessments represent an important step in the pipeline-integrity management process. The evaluation system consists of both quantitative and qualitative indexes, which are characterized by randomness and fuzziness. To address the subjectivity and incompleteness of qualitative and semi-quantitative evaluation methods in the processing of randomness and fuzziness, the cloud theory was introduced, which can simultaneously reflect randomness and fuzziness. The golden section method was used to establish a five-level standard cloud metric for pipeline landslide risk and index weighting. In the cloud transformation process, this paper proposes uncertainty reasoning for the quantitative index and a floating cloud preference algorithm for expert group language as a qualitative index, which comprises the assessment model for landslide risk of oil and gas pipelines. The comprehensive evaluation results indicate that the floating cloud preference algorithm for the qualitative index is more suitable for the language of expert group decision-making than the synthetic cloud algorithm commonly used. In addition, the results of the four pipeline-landslide-risk evaluations are basically consistent with the results of the semi-quantitative method, which is consistent with the actual situation. This method softens the hard divisions between the inner boundaries of the index and simplifies the preprocessing of index data. It fuses the qualitative and quantitative evaluation aspects using composite decision-making and improves the accuracy, rationality, and visualization of the results.

     

/

返回文章
返回